uniF

Harmonize I I I I I
your enterprise

Creating NLU IVR Applications with
OpenScape Media Portal and Fusion
Application Builder plus supporting
Grammar Studio

Summary

This paper describes how to deploy on a Win64bit OS the so called ‘Media Server Starter Kit’ which
includes the OpenScape Media Server (without Symphonia Framework) and the OpenScape Fu-
sion Application Builder for generation of IVR Call flows, examples, TTS and ASR engines and
more as Not-for-Resale (NFR) versions. This Starter Kit shall facilitate access to a test and develop-
ment environment while the sold version supported for productive IVRs needs the OSMS as UC Ap-
plication module / with a UC setup running on Suse Linux. Of course, without a UC based installation
Controls interacting with UC Applications cannot be used herein.

This document provides a tutorial describing step by step how to build a first simple IVR application -
how to generate it, how to test it and how to deploy it.

A second part of this paper describes the solution’s Natural Language Understanding (NLU) capa-
bilities and the so called Grammar Studio, a tool which facilitates generation, extension and testing of
NLU applications and seamless works with the Application Builder. Grammar Studio is today only
available from within the Starker Kit.

Tutorials describing how to generate NLU applications, best practices and more complete this docu-
ment to a comprehensive guide.

Version: 1.1
Date: 08/04/2014
Author: Wolfgang Schiffer et. al.

Unify Software and Solution GmbH & Co. KG
Munchen
Deutschland

U n I F \'jolUr[-gii%_{i(?—.r'_r)r'ise

Table of Content

2. HISTORY OF CHANGESccccciiiiiiiimmnnniiiiniieiniiennnenesiiesneeesssnsses PR -
3. INTRODUCTIONiiiiiiiinnniiiiiiiiiitnnieeniiiiiittieessiiiiieetesssiessssssiesseesssssssssessseees S |
4. PREREQUISITES.....c..ciitiuiiiiiniiiiiiiiiiiiieniiieniiieetiereasisienesesssiessssssessssssessssssesssassssssnssssssnsssssens 10
4.1. Operation System 10
4.2. Multiple Network Adapters10
4.3. Hardware Requirements 10
4.4. Microsoft DirectX 10
4.5. SIP Configuration, Ports 10
4.6. Additional requirements to use certain features w11
5. INSTALLATION & STARTUP.....cuiiiiiiiiiiiiiiniininnieresassissssinssassssssssstsnsatsessssssssssssssssssssssssssssnssssens 12
5.1. Install the Media Server Starter Kit 12

o700 R 0 1YY o T e g I} 1T =Tt o o =TSRSS 12

51,2 IMIBNU ENEFIES 1.ttt b e b bt s b e s e b e e e be e e b b s e ab e s b e e b e e be e sbe b e sbe e sanesanesanesbesabes 13
5.2. Uninstall the Media Server Starter Kit 13
5.3. Startup of Server Components 13
5.4. Shutdown of Server Components 14
5.5. Startup of Server Components separately 15
5.6. Install OpenScape Desktop Client 15
5.7. Configuring OpenScape Desktop Client 15
5.8. Start of OpenScape Desktop Client 18
5.9. Startup of OpenScape Fusion Application Builder ...20

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 2 von 133

uniF

5.10. Startup of OpenScape Grammar Studio 21
6. FUSION APPLICATION BUILDER......ccccuuiiiiiiiiirmnniiiiiiiiiiiniiensiiiiiietiisssseiesiiiisieeesssssissseessssnes 22
6.1. Application Builder Overview .22
6.1.1. GENEral CONLIOIS ...cuiiiiiiiiiii bbb e 22
6. 1.2, IVR CONLIOIS ..ottt e a e b e bbb bbb bt be e aeas 22
6.1.3. UC CONLIOIS ..ottt bbb bbbt b bbb e b 23
6.1.4. ACD CONTIOIS ...ttt e b e bbb bbb et b e s b e 23
6.1.5. CONTIOl COMPOSITIONS ... eeiuveetieteetiettesteessttestteeteete e te e teesteesaeeesseessseasseesaeesseanseesseasbeesseesseesssesasesnsessesnsesenseesseessns 24
6.1.6. Lists, OPErators @Nd FIOWScceeiuieiieiieeiieiteeeteesteestee st e steesitesteess e esteesteesseasseesseasasesasesassesnsesnsesseesseesseesseessseennne 24
6.1.7. Test and Deployment with Sample Application 'SIMPIE IVR'oiviiiriririeeeesee et 24
L0t R =T PPN 25
6.2. Deployment 31
6.2.2. CalliNg the APPIICATION ..eiiuiiiiieiieiiecieeeteet ettt ettt et e e este e e s teesteeeaaeesaeesaeebeeseassseasseessseessesaseenseesseesseesaeessnesnns 35
6.3. Creating @ NEW APPIICAtiONcciiiiiiiiiiiiiiiiiieeireeesiceressssseeessessnssessessssnnasssssssnssssssssssssssssssnnassssssnsassssssnsassssssssnnnes 36
6.3.1. Creating the PrOJECT ...ovuiiiieeieeieeieeteete ettt ettt e b et e s bt e s bt e s bt e e st e st e et e ee bt esseesaeesatesatesabesabe s neenseenseenane 36
6.3.2. Cre@ting the Call FIOWcc.eiiiiiiieieierteet sttt sttt st b ettt s et be et e e bt e st e st et et e s besaeeneenteeneeneennens 37
6.3.3. Configuration of the APPliCation CONTIOISiciieiiiiiiiiieieere ettt ettt e st teesaeesaaesaaesbesbessbeeesseesaeesans 40
6.4. Test the Application via Simulation 54
6.5. Deploy the Application with the Starter Kit 57
7. GRAMMAR STUDIOuiiiuuiiiiinuiiiiinniiiiianiiiseiiisneiiissestissssisiessssissssstsssssssssssmmsssassssssansns 62
7.1. General Overview: Grammar Studio 62
7.1.1. What is @ Grammar FIle?ccciiiiiiiiiii bbb s 62
7.1.2. What is MY REPOSITOIY FOIARI? ...uuiiiiiiiiieiieieeiee ettt ettt ettt ettt s bt e s et e st e sabesabesabe e enbeesbeesaeesasesasesanesanas 63

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 3 von 133

UNIFY i

7.1.3. Application Builder Workspace as REPOSItOry FOIETccuiiiieiiieiiccieecie ettt e s e saesaeeneenes 64

7.1.4, LanGUAZE-SPECITIC GIaMMIAIS . ccuueiuieeuieeureeteeteeiteeesteesteesteesseeesteesseesseessseaseesseasseasseeessesssesnsesanseesseesseesseesssesssesnsesnsen 65

7.1.5. Grammar Working Environment

7.2. Edit a Grammar 68
7.3. View Grammar Code 71
7.4. Analyze Grammar 71
7.5. Generate possible Utterances of a Grammar 73
8. TUTORIAL ‘CREATE GRAMMARYcciiiiiiiiiiiiiiiiiiiiiiiiiiisss 75
8.1. Introduction 75
8.2. Content .75
8.3. Tutorial Step #1: General Preliminaries 77
8.4. Tutorial Step #2: Download Sample Application as initial Draft 77
8.5. Tutorial Step #3: Import Sample Application into Application Builder78
8.6. Tutorial Step #4: Verify successful import of Sample Application 80
8.7. Tutorial Step #5: Configure Sample Application in Application Builder ...81
8.8. Tutorial Step #6: Introducing the Sample Application 82
8.9. Tutorial Step #7: Taking a first insight into the Sample Application 83

8.9.1. What is @ NLU CONEIOI? ..ottt st s st r et sanenne e 83

8.9.2. For what does a NLU Control need @ Grammar?ccceoiiiiiiiiniiieiiicisesess s s 83

8.9.3. What is the purpose of the GrammMar?oceiiiiiiiee et sb e sttt a e s bt e et e et e e be e beesbeesbaesane e 83

8.9.4. Definition of OUr First JOD......coiiiiiiiiii e s 85
8.10. Tutorial Step #8: Create a Grammar to recognize User Utterances using the Grammar Studio only...........ccccccueeuns 85

8.10.1. Reasons for using the Grammar Studio

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 4 von 133

UNIFY i

F 0 B Y= 1Yot Ve o Tor= 4o T o F TR 86

£ 0 0 RN 87

8.10.4. Create a Grammar Container

8.10.5. Create a language-SPeCIfic GramMarc..c i ieeeieiee sttt ettt ettt sa e bttt e s e st snesbesneeseenneneen 88
8.10.6. Start editing language-specific Grammar CONTENT........ociiriieiiiiiieiese ettt teeste e sbeesbaessbeesseenseeseeseenes 88
8.10.7. Add POSSIDIE USEI ULLEIANCESeuvieuieiiieieeiitesitest sttt ettt e sbe e e b e e st e et e e st e et e ebe e e bt esbseeseeeneeenseenneenneenee 91
8.10.8. Include logical Divisions to Grammar ENtry POINTcocueriueriieirieeniientiiesiee ettt seeeesbeesreesreeese e eeeeeeeneees 94
8.10.9. Define Semantic Result as Grammar RETUIN ValUEc..couiriiiirieiiieie ettt st s 96
8.10.10. Import Grammar in ApPlcation BUIAENcoviiieieieeeet et s es 101
8.11. Tutorial Step #9: A deeper insight into the Sample Application 103
8111, WAL IS MISSING? ..eeuiiiiiiiiiiie ettt ettt ettt sttt sttt s bt e bt e bt e s be e s bt e s bt e sbaeesbe e sabesabe e b e eabe e beesbeenbee s sbesabesabenntean 103
8.11.2. What is @ customized Garbage GramimMar?........cccccieiieieeieeiee e eeeseesee e saeete et e et e e saeesaaesaaesaaessaeesbeensessbeenses 104
8.11.3. Definition Of YOUI SECONT JODoiuiiiiiiiiieieerteete et ettt ettt be bttt se st besaeeneeas 105
8.12. Tutorial Step #10: Create a customized Garbage Grammar using the Application Builder onlycccccceeveerunenens 105
8.12.1. Reasons for using the Application Builder as Grammar EditOrcocveeecveierienienenieneseeeseese s eeaeee s 106
8.12.2. Use NLU Control to create a customized Garbage Grammarcevcueruerieeiieeireeesieesieeseeseesiaessaesssesssesssesses 106

8.12.3. Test user utterances to create a customized Garbage Grammar

8.12.4. Add expression as leading Garbage CONTENTcciiiuiiiiiiieieecee ettt sa e s s e e e e b e e beereeereas 108
8.12.5. Implicitly create customized Garbage Grammar for leading Garbageccovvevienienieniiei e 110
8.12.6. Add fUurther 1ading Garbage.........uiviiiiiiiieeeee ettt sb e st e st e sbe s be e b e e be e beenbeenbeeas 111

8.13. Tutorial Step #11 - Create a customized Garbage Grammar using the Application Builder and the Grammar Studio
112

8.13.1. Reasons for using the Application Builder and Grammar Studio in COOperationcccveeveervesiecvieesivesirennens 112

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 5 von 133

UNIFY i

8.13.2. Test user utterances to create a customized Garbage Grammarcceevueeieeieenies et rees 112

8.13.3. Add expression as iNNer Garbage CoONTENTcviiiiiuieiieieeree et ste ettt e saeesaeesaaesaaeesaeesbeenseeebeenseas 113

8.13.4. Implicitly create customized Garbage Grammar for inner Garbage

8.13.5. Add further inner Garbage by using the Grammar STUAIOccueveririiririeieeeee e e 115
8.14. Tutorial Step #12: Verify your Work 117
9. THE KNOWLEDGE BASE.......cceuiiiimiiiiinniiiiniiiieeinieniiieeiniessissiieessiiiesssiitessssssessssmstensnes 118
9.1. Knowledge Base: General CONCEPLS / GIOSSAIYccccccerreerreeereessessesessesssnssessssssssesssssssssasssssessasssassssssssessassasssnsssnnens 118
9.2. Knowledge Base: Grammar Logic 119

9.2.1. What does Recognition mean?

9.2.2. 15 this @ recognizable USEr ULLEIaNCe?oviiriirierierierte ettt b e e b e bee e sanesanesarenareas 119

9.2.3. What is the meaning Of an ULLEraNCE?......ccuiiiiiieiie ettt st e b e st e e b e e be e baesbae s sabesabesabesntenn 119

9.2.4. CONCIUSION L.ttt bbb bbb bbb bbb bbb bbb s bbb bbb 120
9.3. Knowledge Base: Grammar Components 120

9.3.1. COMPONENTS OVEIVIEW ...evuviiiiiiiiiiiesiie st sttt st site sttt s bt s sbe e b e s sae e sat e sabesabe s abe s abeeabe e b e e beeabeeebbesbbeebbeeabeenbes sabesareas 120

9.3.2. RUIBS .t 121

9.3.3. Alternatives

o B IR S 2 (< Tolo Y ={ o T o E-J PP P PP TP RTOTPTRTOPPRRTUPIN 122
9.3.5. RECOGNITION REFEIENCES ..vivivieiieiieiestestieeet ettt sttt st e besee et e e ese e testeebesnees e sseessensentesaesseeseennensennsensens 124
1SR T 0 o 2 0 T=T o £ 125
9.3.7. SEMANTIC RESUILS ...ttt ettt st b ettt e st b e s et e st ehe e b et e b e seteb e eas e st eneneeennesbeeneennennens 125
9.4. Knowledge Base: Improve Grammar Recognitions (Best PractiCes)cccceeeerueerircrsnenieesiccsnnessscssnnesssssssessecssnnnnnes 125
9.5. Knowledge Base: Understanding Semantic Results 126

9.5.1. Content

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 6 von 133

UNIFY

9.5.2. Example: Grammar «G1» Without SEMaNtiC RESUILSc.cocviiiuieiiicieceec e 126
9.5.3. Example: Grammar «G2» With SEMANTIC RESUILS ...cueeiuiiiieiieiieiie ettt e be e b e e beesbeenaee s 127
9.6. Knowledge Base: Application Builder Workspace as Repository Folder 129
9.6.1. Different GramiMar SCOPESuetiiirtertieteeit ettt et sttt sttt ettt e sbeebe e saeeb e et et e bt seeebesateste s eente s enbesaesaeeasesesenaensbens 129
9.6.2. INIUENCES OF GIramMIMAr SCOPESiiuviiiiiiiiieeiteeritesteste st e st e ste e sbeesbe e beessbeesbeesbeesbeesssessseesseessbessbeenbeebeensaensaenseens 129
10. APPENDIX: FREQUENTLY ASKED QUESTIONS (FAQ) ..cccocvueerrinuneeisssuneessssnssseessssneesssssnesssssnns 131
11. APPENDIX: KNOWN ISSUES........cccittiiieeeiiiiniiiniieiiiieeiinnnesissesssnssssssnsssssssssssisssssssssssssnsene 131
12. APPENDIX: APPLICATION SAMPLES OF THE STARTER KIT...cccevuuuiiiiiiiiimienniiiiniiinnninnneensinnnnen 132

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 7 von 133

<8/2011 Wiki Pages as successor/source

W.Schiffer + team

8/5/2011 First Wiki Export: Version not including NLU J.H.Kriiger

8/11/2011 Second Wiki Export, now complete - including Grammar studio J.H.Krliger
and NLU tutorials etc.

8/04/2014 Updates + Reskinning to Unify Brand J.H.Kriiger

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al.

Seite 8 von 133

UNIFY s

The Media Server Starter Kit contains an IVR development environment, which consists of the following components:

OpenScape Media Server (without Symphonia Framework)
OpenScape Application Builder

OpenScape Grammar Studio

OpenScape Desktop Client (OptiClient)

Nuance ASR/TTS

Sample Applications

With the Application Builder and the Grammar Studio you can create, test and deploy IVR applications.
The applications are deployed on the local Media Server. In order to call the applications the OpenScape Desktop Client
(OptiClient) can be used.

This Starter Kit shall facilitate access to a test and development environment while the version supported for productive
IVRs needs the OSMS as UC Application module / with a UC setup running on Suse Linux. Of course, without a UC based
installation these Controls which are interacting with UC Applications cannot be used.

This document provides a tutorial describing step by step how to build a first simple IVR application - how to generate it,
how to test it and how to deploy it.

A second part describes the solution’s Natural Language Understanding (NLU) capabilities and the so called Grammar Stu-
dio, a tool which facilitates generation, extension and testing of NLU applications and seamless works with the Application
Builder. Grammar Studio is today only available from within the Starker Kit.

This document contains the following sections:

= Prerequisites

= |Installation & Startup of Media Server Starter Kit including Media Server, TTS, ASR, the Application Builder and an
OpenScape Desktop Client (OptiClient) to test with

Generation, test and deployment of an example IVR application

Description of the Grammar Studio and Grammars with DIANE engine

Tutorials

Knowledge Base and Best Practises

Q&A

Known Issues

List of example applications

The Prerequisites section provides some general information regarding the development environment. Please make sure to
read that section before the installation of the Media Server Starter Kit.

The Installation & Startup section guides you through the installation of the Media Server Starter Kit and the OpenScape
Desktop client. In addition it describes how to configure the OpenScape Desktop client to operate with the Media Server.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 9 von 133

UNIFY s

This section describes some prerequisites to be considered before the installation of the Media Server Starter Kit.

The Media Server component requires a 64 Bit Windows operating system. The Media Server Starter Kit was created and
tested based on Windows 7 64-Bit operating system, but older Windows operating systems, as long as they are 64-bit,
should work as well.

If more than one Network Adapter is available on your workstation, please make sure that during the operation of the Media
Server all but one Network Adapter is disabled. Especially in case you are using virtualization software (e.g. VMWare)
make sure to disable the additional Network adapters.

The Media Server Starter Kit requires a minimum of 4GB RAM during operation and at least 4GB available hard disk space.
More hard disk space may be required depending of the size of your applications.

The OpenScape Desktop Client requires Microsoft DirectX for operation.

The OpenScape Desktop client will use the port 5060 on the workstation.
The Media Server will use by default the ports 5066 & 5067 on the workstation.
The Nuance Speech Server will use the ports 5062 & 5063.

Please take care that these ports are not used by other applications on your workstation.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 10 von 133

U n I F YO -r e ﬁérprise

Some applications may require internet access (e.g. Weather Application sample)

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 11 von 133

UNIFY s

This section provides information regarding the installation, configuration and start of the Media Server Starter Kit and the
required software components

Please download the following setup components to one directory on your local workstation:

Setup Media Server Starter Kit
Setup Nuance Speech Server
Setup Nuance TTS
Setup Nuance ASR

After the download, start the installation of the Media Server Starter Kit with ms_starterkit_setup.exe.

Please note: The Nuance setup components are installed automatically by the Media Server Starter Kit setup. They cannot
be executed directly.

During setup only the target directory needs to be provided. Once the setup is finished the following directories are created
in the provided target directory:

+---application_builder
+---application_host
+---grammar_studio
+---jre

+---nuance

+---samples
\---workspace

application_builder: The Application Builder

application_host: The Media Server

grammar_studio: The Grammar Studio

jre: JRE, shared between Application Builder, Media Server and Grammar Studio

nuance: Nuance ASR/TTS and Nuance Speech Server

samples: Sample, which can be imported into the Application Builder

workspace: Default workspace, shared between the Application Builder and the Grammar Studio

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 12 von 133

During setup a new folder 'Unify' is created in the start menu. It contains the following entries:

= OpenScape Application Builder

= OpenScape Grammar Studio

= OpenScape Media Server Starter Kit Uninstall
= Start Server components

In order to uninstall the Media Server Starter Kit start the uninstaller 'OpenScape Media Server Starter Kit Uninstall' from

the Start Menu or from the 'Programs and Features' control panel plugin.

The Start Menu entries and the target folder will be removed.

After the installation of the Media Server Starter Kit the server components (Media Server & Nuance Speech Server) can be

started by means of the 'Start Server components' entry in the Unify folder of the start menu.

It will start the Nuance Speech Server in one console window and the Media Server in a second.

Bl C\Windows\System32icmd.exe - startserver.bat

\ms_start, t\nuance\Speech_§
endAlarnsTollatche
sopen: Invalid handle: The operation completed successfully.

ACE_DLL_Manager::open_dll: Gould not open dll.
Huance Core Services are NOT availahle
g\ r.cfg”

o ataconpu
4290959080221 4984 ! ! BiBi! SBCACHE_ERROR! Initialized tuwice! $Bcache
MRCPu2 Server starte

DIME payload type = 96
SDP descriptions on SETUP
"800 payload type

Keep eventloy File open -
cvent log File
P ort port = 49
11 removal mode

“NEiemensm: arterkitsnuance\Speech_Server\Servershin/mrcplosrspeechrecog.dll
Nuance Open Speech Recognizer for i —
rce url postfix = /mediasspeechre.
urce config prefix = server.mrcpl.osrspeechrecog.
urce rtp node = 1
NSS 5.8 MRCPul part —
Processing configuration.

HRCPui Server starting
Server IP addre 1.32.129> —
ion timeout
MRCP max number of
L el Bormen ctonied

Press <q> to stop the server...

r\Serversbinnssserver.exe —confiy ..\config\nssserver.cfg watcher.RestartOn|

i B! SWI_SUCCESS! success! SWIconfigGetDefaultLanguage | Default language ‘de|

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al.

Seite 13 von 133

u n I F H Harmonize
your enterprise

treaning.nps .StreaningConf igurationlnpl audio /G729; annexb-no
treaning.mps . StreaningConf igurationInpl audio/telephone—event<payloadtyl

treaning.mps .StreaningConf igurationInpl UideoFornat:
INFO ia_streaning.mps StreaningConfigurationInpl video H264; profile-level-id=42|

001 INFO cycos._media.streaning.mps . StreaningConfigurationInpl video H264; profile-level-id=42|
; packetization-mode-1
11,0802 INFO ia.streaming.mps .§treaningConfigurationInpl MRCP Synthesize
1,092 INFO cyco ia_streaning.mps StreaningConf igurationInpl Server UR
:49@8/nedia/specchsynthesizer
t11.002 INFO cycos_media.streaning.mps .StreaningConfigurationInpl MultipartSupport

111,082 INFO cycos.media_streaning.mps.StreaningConfigurationImpl KeepSessionOpen

a2 11,882 INFO cycos.media.streaning.nps.StreaningGonfigurationmpl [AdditionalSdpAttributes
@9:59:11,002 INFO cycos.media-streaning.nps.StreaningConfigurationimpl [PreferredFornats
/Pnnu, audio/PCMA, audio G?7291
9:11,802 INFO cycos.media.streaning.mps.StreaningGonfigurationImpl
5 11,082 INFO cycos.media-streaning.mps.StreaningGonfigurationimpl
de DE, zh _CN, en_GB, fr_FR, it IT. es_ES, pt_PT, pe_ BR. n1 _NL. oy RU. tr_IR
9 : 5! 2 lNFO y T onImpl

StreaningRouteld
TTS languages to check

HMRCP Recegnizer:

ycua.madla.“treamlny nps . StreaningConfigurationImpl HultipartSupport

89 :59:11,002 INFO cycos.media.streaning.mps.StreaningConf igurationImpl KeepSessionOpen

7:59:11,002 TNKO ia.streaning.mps . StreaningConfigurationInpl
ia_streaning.mps StreaningConfigurationInpl

AdditionalSdpAttributes
PrefervedFornats

[
[
1
on [
StreamlnS{Cunfl.S{L\l-atlunll'lpl 3 Server
4
4
[
[

media_streaming.mps .StreaningConf igurationInpl [1 Rfc2833PayloadT ype
media_streaming.mps .StreaningConf igurationImpl [1 StreamingRouteld
NFO media_streaming.mps .MpsStreamingProvider [1 Initialized Streaming Provider.
i3 media_streaming.host.HostStreaningProvider [1 Initialized Host Streaming Provider

INFO -media_host .container.DeployedConponentImpl [1 Component:[streaming-mps] initialized in [14]
INFO cycos.media.host .container.DeployedConponentImpl [1 Component:[session-monitor] initialized in [

INFO cycos.media.host .container.DeployedConponentImpl [1 Component:Lapplication-repository] initializ

L2171 1NFO cycos.connectivity.telephony. host.HostTelephonyProvider [1 Initializing Telephony Provider compo

INFO cycos.connectivity.telephony. host.HostTelephonyProvider [1 Telephony Provider conmponent initialil

111,213 INFO cycos.media.host.container.DeployedGonponentImpl [1 Gomponent:[telephonyl initialized in [131 mg
1,323 INFO connectivity.terninal.host.inpl.TerninallostProviderInpl [1 Initialized Terminal Provider in App|

T ;? 135" inro cycos.media.host.container.DeployedConponentInpl [1 Component:[terninal-provider] initialized in

89 : 59 11 327 INFO media.host.binders.terninalbinder.TerninalBinder [1 TerminalBinder initialized — registered with|
scycos.connectivity.mec.sip.inpl.MecConnectionManagerImpl@69d869d8=>
a9 : 59 11 327 INFO cycos.media.host.container.DeployedComponentImpl [1 Component:[terninal-hinder] initialized in [|

n9:59:13,519 INFO cycos.media_host .container.DeployedComponentImpl [1 Component:[toncat] initialized in [7181 ms?

748 INFO edia.host tomeat . UebContextComponent [1 Deploying Tomcat WebContext:[voicexnll at:[file:/
ns /ms. Starterklt/appllcatlnn host uork voicexml-interpreter—4.8_8/
05 S0 15 53 Tk 9065 media. oot container. DeployedGonponentlnpl [1 Component : [veicexnl—interpreter—ruoicexnl-we|
btnntzxt] initialized in [24] nst
:59:14.824 INFO media host . toncat UehContsxtConponent [1 Deploying Tameat WebContext: [sessionnonitor] at:[
qtaktekklt/appllcatlnn hest/uerk, onmonitor-4.8.8/vehcontext 1
e et eantainer DepiopeaBanponent Iapl L1 Gonponant : [sessionnonitor-ucheontext] initial

4,085 INFO "aln Application Host started in 13535 ms?
and running?

Type ERIT to exit

289159 41,008 INFO com.cycos.statistic Stacisticfrancuork [1 Creacing a new statistic francuork instance

sycos.statistic.inpl.StatisticFrancworkinpl [1 Initilizing the statistic Sk using con|

reerkit application host/hin/statistie franeuork.x
D1 BbatisticFranaworkinpl [1 Changod value fron i §{SYMPHONIN_LOG) /traces s
Catistic data.txt’ to *DiGiomenouns starterk1t\app11nat1nn _host\bin\..\logs/traces/statistic—data.txt’ after variable s|
ubstitution
09 :59:41, 087 INFO cycos.statistic.tracing.inpl. Fllaﬁppﬁndar [1 Initializing the file appender ’D:\Siemens\ms_start|
erkit\application huut\hln\..\luya\tracea\atat1gt1c—da a.
NFO os.statistic.tracing.inpl. FllEanEndEr [1 File appender initialized

@2 :5% 41 830 cyccm.atatlgtl tracing.inpl.SocketHubfppender [1 Initializing the socket hub appender using por

cycos.statistic.tracing.impl.SecketHubAppender []1 Socket hub appender using port * 7 initialil

com.cycos.statistic.inpl.StatisticFrameworkImpl [1 Registering statistic manager MBean
statistis pl. i stic manager MBean registered.

dia_Franework.native.stdout nfu.event .EventThread - not

iper(S) took very long ©> 'SP ns. It seens, that the systen is gxtremly under lgads'stuttering is pos
+ 1’ overloadCounter 5’ threadOuerloaded '8’ logCounte:

creaning.nps . psSanityCheckerlnpl [1 Sanity check of rtrzamlny iur component SUCCES|

5224980 /med ia/speechsynthes s working and TI§ licenses are available (if needed>.
nedia.streaning. mps HpsSanityCheckerlmpl 11 Checking TT8 languages domc. available languag

5 cycos.media.streaning.nps .MpsSanityCheckerInpl [1 Checking TTS languages done. availahle languag|
s are: len_US. de DE1

In order to shutdown the Nuance Speech Server, type 'q' in the console window.
In order to shutdown the Media Server, type 'exit' in the console window.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 14 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:mediaserver_console.png?id=dev:sdk:appbuilder:startup_server_components

UNIFY s

In order to start only the Nuance Speech Server, execute the script '..\nuance\startserver.bat' in the folder where the Media
Server Starter Kit is installed.

In order to start only the Media Server, execute the script "..\application_host\bin\start-host.bat' in the folder where the Me-
dia Server Starter Kit is installed.

Please download the OpenScape Desktop client (OpenScapeClient-V40-R0.1.6.zip) to your workstation. Unzip the file to a
directory and install the OpenScape Desktop Client by executing 'setup.exe'.

Details regarding the installation can be found in the document 'OpenScapeClient_Release_Notes.doc' located in the same
directory as the 'setup.exe'.

During installation you should use the default values. More precisely:

= Choose 'Personal Edition’
= Choose 'SIP Provider' as Standard Provider Module
= Do not use 'Central configuration'

After the installation, the OpenScape Desktop Client needs to be configured:

e Start the OpenScape Desktop Client (from the Unify folder in the Start Menu or the Desktop
icon).Configure the dialog 'First Login":

Login

Please enter the new login and password.
Login: STARTERKIT
Password:

Confirm Password:

Profile

Please enter a new profile name.

Profile Name: STARTERKIT

[ok) [Cancal |

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 15 von 133

UNIFY i

Configure SIP Service Provider — Main line:

Autio Schemes Advanced Modules
; : aoner | user 1000
; : Denes Ste Display: Wafgang Schifer
o
Tl R
F Sy o
Sy Addtional lnes e

Line: parameters
ity Registrar

Prowy
4 Outbound Domain
£ Network access
4 Address conversion
4 Addtional functions
System functions
% Codes [T Keyeet
&y Sounds
i Ring tones Private usage
4 Video schemes
4 Bandwidth
£ Port restrictions
4 Qualty of Service
4 Mobie User
% Stimulus Provider -

Immediate connection

m

Address:

Delay (sec.): 0

Configure SIP Service Provider — Registrar.

You have to configure a custom port (‘5066') and your Ioca'I IP address:
—_

Audio Schemes Advanced Modules
; : Gorerl 2| server: 10132128
iy Devics State Connection
4 Webbrowser
%h SIP Service Frovider) Use DNS SRY

B System services) Use Defauk Port

4 Connection

4y Main ine @ Use Custom Port

i Addtional lines

4y Line parameters = 5066

4 Registrar

2

444 Outbound Domain
4 Network access
4 Address conversion
4%y Addtional funcions
4y System functions
4 Codes

4y Sounds

48 Ringtones

4y Videa schemes
8 Bandwicth

4y Port restrictions
8 Quality of Service
4y Moble User

£y Stimulus Provider m
4 Local Joumal Provider

£y HLM License Provider <

i

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 16 von 133

UNIFY e

Configure SIP Service Provider — Proxy.

our local IP address:
I

Audio Schemes Advanced Modules
4 General -
& Prone Server: 10132129
4 Device State Connection
3 Webbrowser I
2 SIP Service Provider () Use DNS SRV
5 -
& Sy ez) Use Defat Port
onnection
Sy Main ine @ Use Custom Port

£ Addtional lines
Line parameters

£ Registrar
b]P0

Praxy|
44 Octbound Domain
iy Network access
£ Address conversion
4y Addtional functions
£ System functions
4 Codes
£ Sounds
4 Ringtones
£ Video schemes
4y Bandwidth
£y Port restrictions
4 Qualty of Servics
4 Mobile User
4y Stimulus Provider m
8y Local Joumal Provider
i HLM Lisense Provider <

Fort: 5085

I

x“_"lﬂlJ‘

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 17 von 133

U n I F H ynuf ehtér prise

Start the OpenScape Desktop Client (from the Unify folder in the Start Menu or from the Desktop icon). As-
suming that the configuration described above is made correct, you should notice the registration of the
Softphone in the Media Server console window.

AWindows\System32\cmd.exe - stari-host.bat

<5ip:1042018.1.32.129>" to ’<sip=111610.1.32.129>’, offered to 1 listener
:14:47,788 INFO fom.cycos.coRREEEivity sip.messiges L1 K¢ sent o [1B.1.11.2011:5868/udp * 404 Not Found’ resp
com.cyces.connectivity.sip.messages L1 >>> received from [10.1.11.2811:506/UDP *REGISIER’ req.

connectivity.sip.registration.impl.Registrar [1 Processing l'ef{lﬁtl'atl.on

connectivity.sip.registration. impl.LocationDatabaselnpl [1 entry *"Oliver Brings" <sip:1B42@1
heen removed

com.cycos.connectivity.sip.messages [1 <<{ sent to [18.1.11.2011:5868,udp *200 OK’ re

Com.Cyces.connectivity.sin.messages [1 3> receiued From [18.1.32.1291:5060,UDP *REGISTER’ req.

connectivity.sip.registration.impl_Registrar [1 Processing registration
com.cycos.connectivity.sip.messages L[] <{< sent to [10.1.32.129]1:586@/udp ’200
com.cycos_connectivity sip.messages [1 >>> received From [16.1.11.2811: e ReST SR req.,

connectivity.sip.registration.impl.Registrar [1 Processing registration
com.cycos.connectivity.sip.messages [1 <<< sent to [18.1.11.2011:5868,udp ’200 OK' resp
com.cycos.connectivity.sip.messages [1 >>> received from [10.1.11.26811:5868/UDP ’INVITE’ req. *1]

connectivity.mcc. pl.MccConnectionManagerInpl [sip.1] Incoming connection from ’“Oliver Bri
to '{sips ﬂl4E1B 1 N 129>' offered to 1 listencrs

com.cycos.connect .messages [1 <<< sent to [10.1.11.2011:5868/u Not found’ resp

S ey Camnect ity S inmeooages 11555 oeived From 1611120175 e RO req, ’1

connectivity.mcc.sip.inpl.MccConnectionManagerInpl [sip.2] Incoming connection from ’“Oliver Bei
. offered to 1 listemers

com.cycos.connectivity.sip.messages [1 << sent to [10.1.11.2011:5068/udp ’404 Not found’ resp

com.cycos._connectivity sip.messages [1 33> received from [10.1.11.2811:5068,UDP 'REGISTER' req.

connectivity_sip.registration.impl.Registrar [1 Processing registration

onnectivity.sip reyistration. inpl.LocationDatabaselnpl L] entry » Oliver Brings" <sip:1042848.1
remove

com.cycos .connectivity.sip.nessages [1 << sent to [10.1.11.201]:5860,udp ’200 0K’
com.cycos.connectivity.sip.messages [1 >>> received from [10.1.32.1291:5868/UDP REGISTER’ req,

connectivity.sip.registration.impl.Registrar [1 Processing registrati
Com-cycos . connebtiuity. o ip. messages [1 (<< sent to [1B.1.32.1591:5868 udp *200 OK' resp

The OpenScape Desktop Client configuration as described here is not licensed, so the full feature set is limited to a grace
period of 30 days. After this grace period only the most basic SIP features (make call, hangup) will work.
However, this is sufficient for the Media Server Starter Kit.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 18 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:startup_opticlient#folded_1

u n I F \'j(fzjll[_llr-[enterr

Once started, the OpenScape Desktop Client should look this:

" v Call Control 2.5 %

© v Contacts ? %

One Warning

The 'warning' in the status line of the OpenScape Desktop Client is the license warning, which can be ignored.

Current error report

License Service ‘o
The license will expire in 27 dayls).

Close i

In case any other SIP Soft phone should be used, please note that the Media Server is using the ports 5066, resp. 5067 for
the SIP communication here.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 19 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:startup_opticlient#folded_2

U n I F %Ur cr’ntér

Start the OpenScape Application Builder (from the Unify folder in the Start Menu). During the setup a 'default’ workspace is
installed on the workstation. The workspace already contains a couple of sample applications.The Application Builder a u-
tomatically starts with this default workspace so that nothing else needs to be configured. Please note that the workspace is
shared between the Application Builder and the Grammar Studio.

Once the Application Builder is started it should look like this:

File Edit View Search Tools Help
(il RETN=REN=R

3
(= Workspace &2 =8
8%
[Workspace Settings
s Workspace Variables
5] Workspace Prompts
Workspace Grammars
OpenScape Servers
Symuia Control Compt
[E] Appointment
DillerCarSupplies
ReadTheMeter
SimplelVR
SpezkingClock
SwitchLanguage
WeatherApplication
WeatherApplicationNL

B

e
8 Outline 52 = O||[EL problems &2
An outline is not available. Description

[l Bookmarks | <" Search

Resource Path

m B

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 20 von 133

UNIFY s

Start the OpenScape Grammar Studio (from the Unify folder in the Start Menu). During the setup a 'default' workspace is
installed on the workstation. The workspace already contains a couple of sample applications. The Grammar Studio auto-
matically starts with this default workspace so that nothing else needs to be configured. Please note that the workspace is
shared between the Grammar Studio and the Application Builder.

Once the Grammar Studio is started it should look like this:

B =

Source Node Repository Peth

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 21 von 133

UNIFY s

The Application Builder is designed to create IVR applications for OpenScape.
This chapter contains the following contents:

e General Overview
e Tutorials (Test and deployment of a sample application, create a new application)

The general overview will try to illustrate the features of the Application Builder, whereas the tutorials will try to guide you
through with the help of examples.

The Application Builder is an application designed to create VR Applications. IVR Applications are created by composing
Application Controls.

Application Controls are categorized in the so called palette within different groups. Main goal of this was to separate con-
trols for UC from all other controls to let users see their dependency to UC, or, vice versa, let them know which controls can
be used without UC/Symphonia Framework in a classical IVR scenario.

Like UC the ACD controls are separated, too — but these ones are visible only in case they are enabled in the properties of
an application (which is not default as it is for IVR and UC controls) and do need an OpenScape Contact center configured
in the Media Server ACD provider for their execution.

Furthermore functionality for call flow design can be found in the palette: call flow direction, operators and potentially cus-
tom controls (controls which are imported with or for an application as seamless extension).

Start: Every call flow must start somewhere.

End: Endpoint of an application. Optional.

Assign: Assign values to variables, including conditions (Rule editor).

Compare: Make a decision based and variables and rules. Allows recursion.

System Info: Provides system data to be used in the application (current date, time, etc).

Web Service: Provides access to RESTful Web Services.

Database Write: Provides write access to databases (JDBC driver required).

Database Read: Provides read access to databases (JDBC driver required).

Time Profile: Allows configuring time profiles. Each time profile corresponds to an exit path of the control.
Delay: Waits for a configurable time.

= Prompt: Plays a prompt.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 22 von 133

UNIFY s

Backing Prompt: Plays a prompt in a loop until the next prompt is played. Allows semi-parallel execution.
Dtmf Input: Collect Dtmf Input provided by a user.

Dtmf Menu: Provides a DTMF Menu. Every DTMF key creates a exit path of the control.

Dtmf Selection: Advanced Dtmf Menu. Menus are created automatically based on list elements.
Language: Switch the language of an application.

Transfer: Transfer the user to another extension (Blind transfer, Consultation (Supervised) Transfer).
Disconnect: Disconnects the caller.

Create Call: Creates an outbound call in a workflow triggered by an event.

Connect Call: Connects a call which was started with Early Media or alerting to avoid charging the user.
Deflect Call: Deflects to a target or rejects a call in a workflow started by an alerting call.

Record: Record what the users says.

Transition: Makes a transition to another application.

NLU: Allows creating flexible and complex voice controlled applications.

Speech menu: Allows creating a voice controlled menu (more simple to use than the NLU control)
Speech input: Allows getting a speech input from the caller ((more simple to use than the NLU control for directed
speech applications)

= Send: Sends a voice message recorded with the Record control.

= Message: Deals with different types of messages in groupware’s message store, e.g. playback, forward, delete,
reply emails, set status of messages, reply to meeting requests

Authentication: Authenticates a user on the OpenScape UC Server. Required for most UC controls.

Change PIN: Changes the PIN (numeric password).

Presence: Allows to get the presence state of a user or to set the presence state of a logged in user.

Contact Search: Search for contacts in the OpenScape UC Contact database.

User Search: Search for users in the OpenScape UC user database.

Conference: Allows to get, create, start and join conferences.

CallJournal: Retrieves the call journal of a logged in user.

Please note: UC Controls require an OpenScape UC Server, which is not part of the Media Server Starter Kit. Applications
which utilize UC Controls must be deployed on an OpenScape UC Server of the same release.

= AcdInit: Registers a call in contact center which is precondition for other ACD controls and starts OSCC’s report-
ing.

AcdEXxit: Unregister a call from the contact center.

AcdStart: Starts the the assignment of a call to an agent in a waiting queue of the connected contact center.
AcdStop: Removes the call from the waiting queue.

AcdcCallback: Creates a callback job in OSCC.

AcdContactData: Attaches data (key value pairs) to a call before this is put in a queue and transferred to an
agent.

= AcdRoutingInfo: Fetches information of the routing status from OSCC for announcements or optimization.

= AcdQueuelnfo: Allows to get, create, start and join conferences.

= AcdCallinfo: Retrieves the call journal of a logged in user

Please note: Executing ACD Controls require an OpenScape Contact Center Server v8 R1 or R2, which is not part of the
Media Server Starter Kit. The Starter Kit does not have a Ul to configure such connection — in the productive OpenScape
Media Server this is done using the CMP for the Media Server ACD provider.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 23 von 133

UNIFY s

Control Compositions do consist of other controls. They can be compared with subroutines which can be reused easily.
Drawn from the palette to the canvas (work area) they look like other controls.
The Starter Kit comes with 2 examples:

= Change numeric password: Change the PIN of UC user
= Logon: does allow a UC user to logon — this includes the change of the user’s PIN

If you edit a composition you find specific start and end controls (Composition Entry, Composition Exit) on the palette.

= List Iterator: A List Iterator control serves for running through step by step and to execute actions programmed in
a subflow for each of the variables.

The List Iterator is defined in a specifc subflow with the specific controls Subflow Entry, Subflow Exit, Subflow
Loop

List Sorter: Sort a variable list with sort order and the sort criterion.

List Modifier: Allows to add or delete elements to or from a variable list.

String Operator: This control allows to modify strings with 15 operations to select from

Time Operator: Allows modification of time variables

Date Operator: Allows modification of date variables

Parallel Flow: Allows to split a callflow in 2 which can be separately modeled. Example: a callee does have to
accept a calling parties’ transfer to him

This section describes how to test and deploy the sample application “SimplelVR”, which is included in the Application
Builders sample applications bundle. The “Simple IVR” application does not require a TTS configured on the Media Server,
since all prompts are pre-recorded.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 24 von 133

U n I F \'jolUr[.r’n-{ierprise

If the default workspace is loaded, the call flow of the application should be already visible in the Callflow editor:

[Application Builder - [DAstarter-kit\application_builder\application-builder-workspace-starterkit] o S
File Edit View Callflow Search Tools Help
- & B3~ | | 100%
(= Workspace 23 % = O[5 Application Settings | [Callflow (Simple VR Callflow) £ =g
& Workspace Settings D ' 100 ' 200 ' 300 ' 400 % Palette
s Workspace Varizbles -
Workspace Prompts A Start l} Select
| Workspace Grammars R Start of Application {71 Marquee
Symia Control Compasitions Simple IVR Application
Il Connection
Lg} OpenScape Servers Applicat
. [Automatic survey 8 lu] Sticky Note
. [Speaking Clock & Califlow Link
» [5] Set Presence State
. 5] Get Presence State - @ Prompt T Listlherator
. [E] Weather Application Welcome (= Control Compositions <
» 5] Switch Language e T change numeric
» [Simple VR 8 * ™ password
(= General Controls P
- 4 start
@ Prompt [End
E Goodbye PRp— =
= IVR Controls ©
Pla @ Prompt
) & Dtmflnput
=N s P VI

400

[End (= UC Controls ©
= i ' Send
2= Qutline &% [=] End of Application & Sen

- T Authentication

= 7t T
e Ep A rEEE

[problems 52 . CJJl Bookmarks| 47 Search =0

[Description Res

The application consists of two Prompt Application Controls (Welcome & Goodbye), which in this case, play a pre-recorded
prompt to the user. The prompt is pre-recorded so that the application can run without a TTS.

The Test feature within the Application Builder allows simulating how the application will run on the server.
Therefore support for the simulation mode is a core feature of each Application Control.

The simulation mode allows running the applications offline, without the need for a TTS or ASR, a UC server or even a Me-
dia Server. The complete application logic can be modeled and tested before deploying the application to the Media Server.
Even error conditions can be tested, by specifying the corresponding exit path of an Application Control. For example you
may explicitly select that a logon fails, in order to test applications call flow under that condition.

In order to test an application, select the Application project you would like to simulate (“Simple IVR”), and click on the Test
Button on the menu bar:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 25 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:applicationbuilderstartup.png?id=dev:sdk:appbuilder:step1

Application Builder - [DAstarter-kit\application_buil

Eile Edit View Callflow Sedrti, Tools Help
4. | & J-[FH= |

[~ Workspace &% [et Application g
Workspace Settings
lorg Workspace Variables
|o| Workspace Prompts
|7 Workspace Grammars
> Symvia Control Cempositions
=+ OpenScape Servers
5 Autematic survey <
s Speaking Clock
3 Set Presence State
5 Get Presence State -
s Weather Application
3 Switch Language
> Simple IVR

nin

Alternatively you can the select “Test Application...” from the context menu when right clicking the Ap plication Project or by
clicking on arrow beside the test button in the menu bar. You can also select the project to test from the drop -down list.

Please note that you can only test applications which are syntactically correct. Otherwise the “Test Application...” function-
ality is disabled for this application. In addition the errors are displayed in the Problem view.

The Application Simulator is separated in different areas:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 26 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:applicationbuilder_simpleivr_starttest.png?id=dev:sdk:appbuilder:step1

UNIFY i

your enterprise

& Simulation of 'Simple IVR'

Simulation Control:

Simulation Parameters:

Runtime Variables:
5t b Simulstion | Caller Number:

[] Delay of each Step (ms): | 1000 Called Number:

["] Step through Simulation Redirected Number:

Runtime Process:

& san
S Start of Applicavion
Simpla VR Appicaticn

@ sromor

Goadbys

[£na
End of Application

Runtime Output:] ul 8w NG

Runtime Input:

With the Simulation control you can start the simulation and control how the simulation will be executed.

Without providing any further options, the application will run until user input is required or, if a control provides more than
one exit path, the exit path for the simulation needs to be provided (default mode).

Alternatively you can choose between the following options:

Delay of each Step: The simulation will run as in the default mode, but with a configurable pause after each appli-
cation control executed

Step through Simulation: Manually run through the application. Every step needs to be explicit triggered. Please
note that even an assignment to a variable is a single step.

Every IVR application can access the following set of runtime parameters:

Caller Number: The number of the originating phone device (if available)
Called Number: The number the caller dialed

Redirected Number: The redirected number information
Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 27 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:applicationbuilder_simpleivr_simulator.png?id=dev:sdk:appbuilder:step1

U n I F YO -r e ﬁérprise

If the application provides business logic based on these parameters, the data for the simulation can be applied in this sec-
tion.

In this section the currently active call flow is displayed:

Runtime Process: [

L

J.[|

1§ start

. Start of Apphication

[# End
End of Application

In case of multiple call flows per application or of sub-call flows in control composites, the ‘active' call flow is loaded. On the
loaded call flow the Application Control which is currently processed is highlighted.

The runtime output section shows logging information from the application, including information which prompts are played,
etc.:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 28 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:applicationbuilder_simpleivr_simulator_process.png?id=dev:sdk:appbuilder:step1

U n I F YO -r e ﬁérprise

Runtime Cutput: &b II| BN

12:06:50,002: Processing Control "Welcome'...

12:06:50,008: Announ

m

12:06:50,535: Processing Control 'Goodbye'...

12:06:50,539: Announcing Text

4 I

The following filter options are available:

= Status Messages
= Prompt Messages
= Input Messages

= Variable Messages

Typically, if you are only interested in the application input and output, you would hide Status Messages and Variable Me s-
sages.

The runtime input section allows providing input to the application during the simulation. You can either provide input as a
normal user would do, like providing a PIN Number, or you can select the exit path of an Application Control. The later can
be used to explicitly simulate the behavior of the application in case of an error.

Runtime Input: Runtime Input:

Control Event: B ——
DTMF Input: 123

Logon Successful - P

Logon Successful

Change Pin Required

Invalid Loegon Data
Account Locked

Too Many Attempts Send Input
Error

Please note: the screenshots shown above are taken from another example application.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 29 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:applicationbuilder_simpleivr_simulator_output.png?id=dev:sdk:appbuilder:step1
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:applicationbuilder_simpleivr_simulator_input_2.png?id=dev:sdk:appbuilder:step1
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:applicationbuilder_simpleivr_simulator_input.png?id=dev:sdk:appbuilder:step1

U n I F %Ur cr’ntér

The runtime variables section shows every variable which is used in the application. Variables are shown when they are
created during runtime - when values were assigned to the variables.

Runtime Variables: =
[t CALLER (String) = "
[h CALLED (String) = ™"
[uth REDIRECTED (String List) = "
@ Length (Integer) = "1"
@ First (String) = "
@ Last (String) ="
[oth LANGUAGE (String) = "en-us"
[h DATE (Date) = "2010-10-06"
@ Year (Integer) = "2010"
@ Month (Integer) = "10"
@ Day (Integer) = "6"
[TIME (Time) = "12:11:36"
@ Hours (Integer) = "12"
@ Minutes (Integer) = "11"
@ Seconds (Integer) = "36"

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 30 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:applicationbuilder_simpleivr_simulator_variables.png?id=dev:sdk:appbuilder:step1

In order to deploy an application, select the Application project you would like to deploy (“Simple IVR”), and click on the De-
ploy Button on the menu bar:

t Search-—Tnools Help
| (B~ & -

b
3 Deplgy Simple IVR F
ce Setting
ce Variables

Alternatively you can the select “Deploy Application...” from the context menu when right clicking the Application Project or
by clicking on the arrow beside the deploy button in the menu bar. You can select the project to test from the drop-down list.

Please note that you can only deploy applications which are syntactically correct. Otherwise the “Deploy Application...”
functionality is disabled for this application. In addition the errors are displayed in the problem view.

The deployment process, which is the process of creating a Media Server deployment package, is supported by the d e-
ployment wizard.

On this first page of the Deployment wizard is the folder specified, in which the Media Server deployment package is creat-
ed:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 31 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:applicationbuilder_simpleivr_startdeploy.png?id=dev:sdk:appbuilder:step1

U n I F \'jolUr[e ﬁérprise

r 5
7 Application Deployment - - B

Deployment of SimpleIlVR —

Specify the OpenScape Server or (additionally) the local Folder the Application
will be deployed to.

You are about to deploy a Symvia Application ento an OpenScape Server.
Deployment can either be done directly onto an OpenScape Server or (additionally) into a local
Deployment Package (an Archive) which has to be uploaded to a Server manually.

["] Deploy onte an OpenScape Server

Login

Automatically login with this Profile if not already legged in

Deploy into a local Deployment Package

Target Folder: CAUnify\ms_starterkit\application_host\deployment-cus

< Back Net> || Finish || Cancel

The sample applications of the Starter Kit are preconfigured, so the output directory of the deployment process is, at the

same time, the deployment folder of the Media Server. This way the applications are available on the Media Server once
the deployment process has been finished. This is typically a process of few seconds and can be checked on demand in
the Media Server command line console as described later in this document.

In case of deployment to an OpenScape UC Server it is possible to either upload a deployment package as created above

or, a direct deployment can be used. The latter needs a connection profile which can be created at a workspace’s Ope n-
Scape Server settings.

In the next step, the phone number can be configured which should be used to call the application after it has been de-
ployed to the Media Server. Since the Starter Kit contains a stand-alone Media Server without a management Ul you need
to keep track of the applications deployed on the Media Server.

Y In case you need to start from scratch or change e.g. a language bound to a given extension and application you can d e-
late all or the specific application from ..\Unify\ms_starterkit\application_host\deployment-custom

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 32 von 133

UNIFY .

O Application Deployment o - -

Deployment of SimplelVR

Specify the Mumber of the Application on the Server and whether it will trace
during Runtime.

Specify the Phone Number on the Server under which the Application shall be reached.

The Phone Number has only to be specified in case the Application can be triggered by an
‘Incoming Call' Event.

Pheone Number: 807

Specify whether the Application will trace its Runtime Processing or not.
‘When tracing, the Application will generate Trace Output that is being written into the
Server Log. The Qutput may help to track dewn potential Problems or Errors that occur

during Runtime of the Application.

If enabled, all the Controls that are configured to trace their Runtime Processing will also
generate Trace Qutput. If disabled, the Controls will not generate Trace Output.

Enable Runtime Tracing

[<Back | mea> |[Finsh |[Cancal |

A list of the numbers which are already used by the Media Servers build-in applications and by the sample applications can
be found in the Appendix.
On this second page the application can be configured to create trace information additionally.

On the Wizard’s next page the language resources which are deployed on the server can be configured. For example you
may decide only to include the English resources even if the Application contains resources for multiple languages:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 33 von 133

U n I F YO -r e ﬁérprise

<
O Application Deployment LIEI&

Deployment of Simple IVR

Specify the Languages the Application will be deployed with, Only
Resources of the selected Languages will be part of Deployment. 1

Workspace Language Target Resource Folder Select All
8 German german
. Deselect All

&= English (United States) american

Mest = Finish] [Cancel

In case of multiple languages the default of the application will be the active one for new deployments.

The last step of the wizard allows determining if the complete application with all resources shall be fexported. | Kommentar [JHK1]: Was ist dam-
it? Obsolete: The last parameter on

this page is the Server Address.
This parameter needs to be pro-

Click on 'Finish'. This creates the Media Server deployment package.
vided if application requires access
to an OpenScape UC Server, for
B Deployment Successful === example if UC Controls are used

within the application (Presence,
Logon, etc.). - This parameter will
go away in later versions.

@R 'Smple VR has been successfully deployed!

[Do not show this message again

Changes made in the deployment wizard are saved, so that you can directly click on 'finish' if you plan to deploy a new ver-
sion of the application with the same deployment settings again.

After the Application Builder has deployed the Application to the Media Server Deployment folder, the process of activating
the application within the Media Server takes some time.

Before calling the application, check the log for lines like:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 34 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:applicationbuilder_simpleivr_deploy_page_3.png?id=dev:sdk:appbuilder:step1
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:applicationbuilder_simpleivr_deploy_finished.png?id=dev:sdk:appbuilder:step1

UNIFY s

13:32:35,250 INFO cycos.connectivity.terminal.impl.TerminalProviderImpl [] Adding
terminal 'SimpleIVR', applet='application:/SimpleIVR'

13:32:35,263 INFO cycos.media.host.tomcat.WebContextComponent [] Deploying Tomcat
WebContext:[SimpleIVR] at:[file:/D:/starter-kit/application_host/work/SimpleIVR-
1.1.1/webcontext]

13:32:35,326 INFO cycos.media.host.container.DeployedComponentImpl [] Compo-
nent:[SimpleIVR-webcontext] initialized in [63] ms!

Start the VolIP softphone. Make sure that it is connected to the Media Server. Check the Prerequisites for more details in
regard to the softphone configuration.

Dial the number 807 to call the application. Besides hearing the two prompts of the application, the Media Server log
should show the call as well:

13:49:21,309 INFO connectivity.mcc.sip.impl.MccConnectionManagerImpl [sip.@] Incom-
ing connection from '<sip:Wolfgang%20Schiffer@10.1.32.129>"' to '"807"
<sip:807@10.1.32.129>"', offered to 1 listeners

13:49:21,335 INFO af.ivr.ms.applet.CannedApplication [] Loading application proper-
ties [file:/D:/starter-kit/application_host/work/SimpleIVR-
1.1.1/conf/symvia.properties.xml]

13:49:21,511 INFO cycos.media.host.container.DeployedComponentImpl [] Compo-
nent:[SimpleIVR] initialized in [179] ms!

13:49:21,524 INFO media.host.binders.terminalbinder.MCCListener [sip.@] Call
'sip.@' will be handled by application 'application:/SimpleIVR', session 'session:sid.1l',
terminal 'SimpleIVR'

13:49:21,642 INFO cycos.media.framework.native.stdout [] 2010-10-06 13:49:21,642
INFO mfw.event.EventThread - notifiying event-consumer(8) took very long -> '52"' ms. It
seems, that the system is extremly under load; stuttering is possible! (notified '1' con-
sumer; in list '1' overloadCounter '5' threadOverloaded '@' logCounter '0'")

13:49:21,757 INFO connectivity.mcc.sip.impl.MccConnectionManagerImpl [sip.@] Incom-
ing connection established. CallId='Y2M2MTJ1YzRmN2Y2MmQ3ZjkyOTIhZmImYTQwWZGNkMzI. "

13:49:22,093 INFO cycos.mps.af.api.AbstractRuntime [sid.1 CannedAp-
plet.CannedDialog.@] WF Session created for application
[com.cycos.mps.af.symvia.ivr.application.SymviaSpeechApplication]: [sid1347004f-7346-
4b69-2a78-bf8806195172]

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 35 von 133

13:49:22,097 INFO api.control.general.impl.AbstractSymviaControl [sid1347004f-7346-
4b69-2a78-bf8806195f72] Application [Simple IVR] called

13:49:28,634 INFO cycos.mps.af.api.AbstractSession [sid1347004f-7346-4b69-aa78-
bf8806195f72] WF session closed:[DefaultSession(sid1347004f-7346-4b69-aa78-
bf8806195f72;CLOSED; currentControl:null;application:null;isExecuting:true;isJoined:false)

]

13:49:28,754 INFO connectivity.mcc.sip.impl.MccConnectionManagerImpl [sip.@] Dis-
connected

In this section we will create a new application from the scratch. In order to keep the tutorial reasonable short the applica-
tion will be rather simple, but of course it can be easily extended. For more complex applications consider to have a look at
the available sample applications or control compositions.

The example application will collect DTMF input from a user and in a second step repeat the input. This application requires
aTTS.

To create a new application, click on File—New—Application. In the dialog select 'Symvia Application (AF 2.0)" as the type
of the new application and click on 'Next'.

% New Application l Sl S|

Select Type of new Application —

Select the Target Platform and the Type of the Application that shall be
created.

a [§ Symphonia Voice Response
Symvia Application (AF 2.0)

|7 Save Selection and skip this Page the next Time

< Back MNext = Finish

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 36 von 133

U n I F \'jolUr[e ﬁérprise

In the next dialog provide a name for the new application (e.g. “Get Input”). Select “Add single Call flow to Application”,
since this will save us the effort to create the initial call flow later on. We don't need the default variables, so checking the
option “Add default Variables to Application” is not necessary. Both settings can be done later on as well.

[Mew Application l BN X

Specify Name of new Application —_—
Specify the Mame of the Symvia Application that shall be created.

Application Mame: Get Input

Creation Settings
[]dd single Califlow to Application;
[] Add default Variables to Application

Next > Finish] [Cancel

Click on button 'Finish'.

Please note that the project is marked with a red cross in the workspace, which means that the project contains errors. The
error is displayed in the 'Problems' view:

[3_ Problems &1 E]] Bookmarks ﬂ);' Search
1 Error, 1 Waming

=0

Description Resource Path
4 1 Errors (1 item)
@ Application 'Get Input' misses a "Start" cantrol Symvia Application GetInput
4 Tz Warnings (1 item)
& Application Callflow 'Callflow 1’ dees not contain any reasonz Symvia Application Callflow Get Input/Callflow 1

<[(]

In this case it is reported that the applications call flow does not contain a Start control (reported as error) and that there is
no other reasonable content in the call flow (reported as warning).

The next step is to model the applications call flow by putting the Application Controls we need on the Call flow Editor.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 37 von 133

U n I F %Ur cr’ntér

Open the project by double clicking the project in the Workspace and double click the Callflow (—“Callflow1”):

(= Workspace &3 & =03

Workspace Settings
oy Workspace Variables
Workspace Prompts

B EIE

Workspace Grammars

> Symvia Control Compaositions
=i OpenScape Servers

> Automatic survey

> Speaking Clock

5 Set Presence State

> Get Presence State

> Weather Application

> Switch Language

> Simple VR

i Application Settings
|\ Application Variables
,'| Application Prompts
Application Grammars
Application Resources

Callflow 1

EDRE

For this application we need the following controls:

= Dtmfinput Control

= Prompt Control, to repeat the user input

= Prompt Control, if a problem occurs in the Dtmflnput Control
= Start/End Control, which are required for our application

In order to make the Call flow look 'smoother’, it is recommended align controls width. Both size alignment and alignment of
positions can be done in the menu opening with right mouse click:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 38 von 133

U n I F %'8,— cr’ntér

1 1 =
B ey S
: a’-‘; Compare 9: 1
[Compare Control 1 X |
1 7 . b
] r——— I < Undo Align H
! > Redo Match .
1 «
i of Cut i
[FEEEE e e H=occocoo = Copy =
i @ SystemlInfo Paste .
? SystemInfo Control 1
Delete
Order 3
Align 3
Match »| & Match Width
o i Arrange v | [Jlf Match Height
EE Match Size
Properties e
The result could look like this:
P o ' 100 ' 200 ' 300 ' 400 ' 500
4% Start]
- Start of Application
g
& Dtmilnput]
- Ditmflnput Control 1
=
_ @ Prompt e @ Prompt a8
Prompt Centrol 1 Prempt Control 2
=
A
e O]
-1 [End i’
End of Application 1
@ = (-]
=
F

Now the wiring of the Application Controls needs to be done, so that we have the core framework of the application fin-
ished.

= The Dtmflnput control provides two exits which must be connected:
= Input Confirmed: Default exit, the input was successfully received
= Input Aborted: Input operation was aborted by the user

This can be done by using the anchor points of the controls on the canvas or by selecting ‘connection’ in the Palette and
clicking on the controls to link afterwards.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 39 von 133

UNIFY .

P o ! 100 ' 200 ! 300 ' 400 ' 500
A Start
. Start of Application
hpplicatio
=]
=
S Dtmflnput a
- Dtmflnput Contral 1
=
51
_ 0 Prompt @ @ Prompt &
Prompt Contrel 1 Prompt Control 2
=i k Dane
=
- [End
End of Application1
=
E

After this, some issues are reported in the problems view, since we did not configure the Application Controls properly. This

will be done in the next steps.

In the problems view this control reports that there is no variable define for confirmed input.

£ Problems 52 . LCfll Bookmarks| 4" Search
1 Error, 3 Warnings

Description Resource
== Errors (1 item)
€ Control ‘Dimflnput Control 1* misses value for variable for confirmed input Symwia Dtmflnput Centrel
= Warnings (3 items)
4 Control ‘Prompt Contrel 2' dees not specify any anneuncements Symvia Prempt Control
& Control ‘Prompt Control 1' does not specify any announcements Symvia Prompt Control
& Control ‘Dtmflnput Control 1' docs not specify any anneuncements Symvia Dmflnput Control

Path
Get Input/Callflew 1/Dtmflnput Contrel 1
Get Input/Califlow 1/Prempt Control 2

Get Input/Callflow 1/Prompt Cantrol 1
Get Input/Callflow 1/Dtmflnput Control 1

Double click the entry in the problems view or double click the control on the Callflow editor to open the control’s configura-

tion dialog:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al.

Seite 40 von 133

U n I F YO -r e ﬁérprise

R | LT

8 Dtmflnput L

DtmfInput Centrol 1

v

@ Prompt &

On the 'General' tab you can change the name of the control which appears in the Callflow Editor and provide a description.

The option 'Enable Runtime Tracing' will allow collecting trace data for the control.
These options are available for every control and it is recommended to provide at least a reasonable name.

The description will be used for the tool tip which is displayed in the Callflow Editor.

Change Properties for Dimflnput
|
Change the General Properties for the Control of Type Dtmflnput.

r
] Properties

General |Ir1put | Annocuncements

Mandatory
Mame: Dtmflnput Control 1

Description:

[T Enable Runtime Tracing

Restore Defaults oK Apply

On the 'Input’ tab most of the settings don't need modification with the exception of the 'Input Storage' section.
Here we need to specify a variable, which we will use to store the user input:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 41 von 133

U n I F \'jli_)[f; .r’nyerprise

[Properties &J

Change Properties for Dimflnput ——

@ Variable for confirmed input has to be specified.

|Genera|| nput Announcement;‘

Menu Parameters

Menu Timeout (Seconds): 10 =
Menu Repetitions (No Entry): 3 =
Menu Repetitions (Invalid Entry): 3 =

Key Layout for Confirm/Cancel
@) Star/Pound (/%) () Pound/Star (#/%)

Input Parameters

Minimum Input Length: 0 =
Maximum Input Length: 10 =
Input Storage

Variable for confirmed Input: E]
Variable for Input Length: <none> E]

Restore Defaults QK Apply

Click on the "..." button to select a variable from the variable list.

Input Storage
Variable for confirmed Input: B
Variable for Input Length: <none» U

Since we did not create a variable so far (can be done in the 'Application Variables' Editor) the variable list is empty.
Click on 'Create new Variable...' to create a new variable.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 42 von 133

U n I F \'jli_)[f; .r’nyerprise

[utb Select Variable =)

Select the Application Yariable to use

Selectthe Symuia Application Variable o be used. Only those Variebles area valid selectionthat 0] ()
have the requested Variable Type 'String'.

Variable Type Description

lus Create new Variable...

In the dialog provide a suitable name (e.g. “USERINPUT”) and a description. The type “String” is correct. A Variable Trans-
formation is not needed here.

r B
[ub Create Symvia Application Variable &J

Set Properties of the Application Yanable

Specify Name and Description of the new Symvia Application Variable, 01 9
Additionally you have to specify the Type of the Variable.

Variable Mame: 'ARIABLEL

Variable Description:

Variable Type: [String '] B

Variable Transformation: [<none>

élick on button ‘OK’.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 43 von 133

uniF

In the “Select Variable” dialog the new variable is automatically selected, so we can click on OK. On the 'Announcement'
tab we can create a list of prompts which will be played to the user before the Dtmf input is collected.

] Properties

Change Properties for Dimflnput 1
1

Specify the Announcements to be played and the Order of Playback.

General | Input || Announcement:

Playback List of Prompts and Variables - ﬁ -

Annocuncement

Confirmation Prompts

Prompt for cleared Input: | <none>

Prompt forinvalid Input: | <none>

] (o) ooy

Click on the 'new prompt' button:

&~

This will open the list of available prompts. Since we did not create a prompt so far (can be done in the 'Application Prompt'
Editor) the variable list is empty.

Click on 'Create new Prompt...' to create a new prompt:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 44 von 133

U n I F ylf_)L-u' c'lil- erp

r ~
|41 Select Prompts for Announcement List ﬁ

Select the Prompts to add to the Announcement List:

l#| Create new Prompt...

%

In the new dialog ‘Create Symvia Application Prompt’ provide the following values:

= Prompt Name: get user input
= Prompt Description: Prompt the user to provide DTMF input
Prompt Text: Please enter up to 10 digits with the DTMF keypad and finish your input with the STAR key

Of course other values will work as well.

.
[4] Create Symwia Application Prompt @
Set Properties of the Application Prompt
Specify Mame and Description of the new Symvia Application Prompt. J\
Additionally you may specify the different Prompt Texts and the Audio File.

Prompt Mame: Prompt 1

Prompt Description:

Prompt Category [<none> v] E]
Prompt Texts:

&= English (United States)

Prompt File:

élick on the button ‘OK’.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 45 von 133

UNIFY s

In the “Select Prompts for Announcement List” dialog the new prompt is automatically selected, so we can click on OK.

The configuration of the Dtmflnput control is now finished. Click on OK and save the callflow (Ctrl-s). The error message
should disappear from the Problems view.

The next prompt control we will configure is the Prompt Control which is connected to the 'Input Confirmed' exit of the Dtm-
flnput Control.

¥

& tmflnput
Get User Input

Input C:n"irl"e::T

Q Prompt &
Prompt Control 1

:'::“=T

Elaybate

[# End
End of Application 1

Double Click the entry in the problems view or double click the Control on the Callflow editor to open the controls configur a-
tion dialog. On the 'General' tab you can change the name of the control which appears in the Callflow Editor and provide a
description:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 46 von 133

U n I F ylf_)L-u' c'lil- erp

.
=] Properties @

Change Properties for Prompt [=
Change the General Properties for the Control of Type Prompt.

General | Announcements

Mandatory

Mame: Repeat user input

Description: Repeat the input provide by the userl

["]Enable Runtime Tracing

ok J[conce || apmy

The 'Announcement' tab is the same as in the Dtmfinput Control.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 47 von 133

uniF

.
=] Properties @

Change Properties for Prompt ——
Specify the Announcements to be played and the Order of Playback.

Playback List of Prompts and Variables - ﬁ hd

Annocuncement

Lok [cancel [sopy

But now we have to provide a prompt and the variable which contains the stored user input (‘USERINPUT").

First we create a new prompt — therefore click on the 'new prompt' button:

-

This will open the new list of available prompts. We need a new prompt so click on 'Create new Prompt..." to create a new
prompt:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 48 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:applicationbuilder_newapp_dtmfinput_3_addprompt.png?id=dev:sdk:appbuilder:step2

U n I F ylf_)L-u' c'lil- erp

[4] Select Prompts for Announcement List L&

Select the Prompts to add to the Announcement List:

la| Create new Prompt...

[4] Create Symvia Application Prompt @

Set Properties of the Application Prompt

Specify Name and Description of the new Symvia Application Prompt.
Additionally you may specify the different Prompt Texts and the Audic File.

3

Prompt Name: M

Prompt Description:

Prompt Category [uwone:v v] E]

Prompt Texts: &= English (United States)

Prompt File: E]

In this dialog provide the following values:

= Prompt Name: 'repeat user input'

= Prompt Description: 'Repeat the input provided by the user'
= Prompt Text: 'You entered:'

Of course other values will work as well. Click on button ‘OK’.

Next we select the variable which contains the user input: Click on the arrow next to the 'new prompt' button and select 'Add
Variable...". Select the 'USERINPUT" variable from the list and click on OK:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 49 von 133

UNIFY s

==

.
[Select Variables for Announcement List

Select the primitive Variables to add to the Announcement List:

[#][ath USERINPUT

0K] [Cancel

|
Click on OK again to close the prompt configuration and save the call flow (Ctrl-s). One of warnings should disappear from

the Problems view.

The next prompt control which needs configuration is connected to the 'Input Aborted' exit of the Dtmflnput control.

o Q]
Q@ Prompt &
Prompt Control 2

I"\
Double Click the entry in the problems view or double click the Control on the Callflow editor to open the controls configur a-

tion dialog.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved
Seite 50 von 133

Authors: Schiffer et al.

U n I F ylf_)L-u' c'lil- erp

On the 'General' tab you can change the name of the control which appears in the Callflow Editor and provide a description.
] Properties

Change Properties for Prompt ——
I

Change the General Properties for the Control of Type Prompt.

General | Announcements

Mandatory

MName: Prompt Contrel 2

Description:

[T Enable Runtime Tracing

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 51 von 133

U n I F ylf_)L-u' c'lil- erp

On the 'Announcement' tab we have to create a new a prompt which announces that the user cancelled the operation:
] Properties

Change Properties for Prompt [———1
Specify the Announcements to be played and the Order of Playback.

General

Playback List of Prompts and Variables - ﬁ -

Announcement

] (o) Loy

Click the 'new prompt' button. This will open the new list of available prompts:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 52 von 133

U n I F ylf_)L-u' c'lil- erp

[§] Select Prompts for Announcement List @

Select the Prompts to add to the Announcement List:

[[&] get userinput
[7] [repeat user input

[¢] Create new Prompt...

A

Click on 'Create new Prompt...' to create a new prompt.

|41 Select Prompts for Announcement List Ié]

Select the Prempts to add to the Announcement List:

la| Create new Prompt...

L

In the next dialog provide the following values:

= Prompt Name: 'Operation cancelled'
= Prompt Description: 'The operation was cancelled by the user'
= Prompt Text: 'The operation was cancelled. Thank you for calling. Goodbye.'

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 53 von 133

UNIFY e

<
[l Create Symvia Application Prompt @

Set Properties of the Application Prompt

ke,

Specify Mame and Description of the new Syrmvia Application Prompt.
Additionally you may specify the different Prompt Texts and the Audic File,

Prompt Name: Prompt 1

Prompt Description:

Prompt Category [<none> vl E]

Prompt Texts: &= English (United States)

Prompt File: E]

Click button ‘OK’.
Click on ‘OK’ to close the prompt configuration and save the call flow (Ctrl-s).

All warnings should now be gone from the Problems view.

In order to test the new application, select the new application in the workspace and click on the Test Button on the menu
bar:

8 Apolcation bide - [D\RAB R applcation BN appIAToE

File Edit View Callflow 5 Tools Help
C |

gil gt 5~ |
(= Workspace &3 ‘& = O|[[E calflow (Califle
|5 Workspace Settings -
)

M |

1o Workspace Variables
|&| Werkspace Prompts

|z Workspace Grammars
> Symvia Control Compaositions

war OpenScape Servers Start ¢
> [F] Automatic surv g

ey E
> [E] Speaking Clock Application S

> Set Presence State
> [£] Get Presence State -

> Weather Application i &
> Switch Language - Get
> [E] Simple VR &

> Get Input Input Confirr

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 54 von 133

U n I F \'jli_)[f; .r’nyerprise

Start the simulation in default mode. The application should run to the Dtmflnput Control and request input
from the user.

= Simulation of ‘Get Input’

Simulation Control: Simulation Parameters: Runtime Variables: B
[uih CALLER (String) = ™"
Start Simulation | | Stop Simulation | Caller Number: [ulb CALLED (String) = ™"
[T] Delay of each Step (ms): | 1000 Called Number: uth REDIRECTED (String List) = "
© Length (Integer) = "1
[T Step through Simulation Redirected Number: ength (Integer)

& First (String)

Runtime Process: & < @ Last (String) =™
b LANGUAGE (String) = "en-us"
b DATE (Date) = "2010-10-11"
@ Year (Integer) = "2010"
s 1gr
e @ Month (Integer) = "10

& Day (Integer) = "11"

[TIME (Time) = "15:16:22"
& Hours (Integer) = "15"
& Minutes (Integer) = "16"
& Seconds (Integer) = '22"

BH G| S ® S N Gt RuntimeInput:

DTMF Input: |

ng Control ‘Get User Inpu

« il - Send Input

Provide some input in the DTMF Input box in the Runtime Input section, and click on 'Send Input'.

Runtime Input:

DTMF Input: | 4711

In the Runtime Output section of the Simulator you should see that the application repeats the user input.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 55 von 133

U n I F %Ur cr’ntér

Runtime Output: @H Il| BN (e

15:16:22,392: Processing Control 'Get User Input'... o

e 31 AR K

e

DTH vour input with the ST

15:16:22,405: Announcing Text "P
15:21:35,260: Received DTMF Input: '4711°
15:21:35,262: Processing Control 'Get User Input'...

15:21:35,268: Processing Control 'Repeat user input'...

You entered:” [from TTS It

€

Annaun [from Prompt ltem

m

15:21:35,279: Processing Control 'End of Application1'...
15:21:35,286: ... Application has been stopped.

4 m 2

For more details about the Simulation capabilities of the Application Builder please refer to chapter *

Control Compositions

Control Compositions do consist of other controls. They can be compared with subroutines which can be reused easily.
Drawn from the palette to the canvas (work area) they look like other controls.
The Starter Kit comes with 2 examples:

= Change numeric password: Change the PIN of UC user
= Logon: does allow a UC user to logon — this includes the change of the user’s PIN

If you edit a composition you find specific start and end controls (Composition Entry, Composition Exit) on the palette.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 56 von 133

U n I F \'jolUr[e ﬁérprise

= List Iterator: A List Iterator control serves for running through step by step and to execute actions programmed in
a subflow for each of the variables.
The List Iterator is defined in a specifc subflow with the specific controls Subflow Entry, Subflow Exit, Subflow
Loop

= List Sorter: Sort a variable list with sort order and the sort criterion.

= List Modifier: Allows to add or delete elements to or from a variable list.

= String Operator: This control allows to modify strings with 15 operations to select from

= Time Operator: Allows modification of time variables

= Date Operator: Allows modification of date variables

= Parallel Flow: Allows to split a callflow in 2 which can be separately modeled. Example: a callee does have to
accept a calling parties’ transfer to him

Test and Deployment with Sample Application 'Simple IVR", sub chapter ‘Test".

In order to deploy the new application, select the new application in the workspace and click on the Deploy Button on the
menu bar.

I
[Application Builder - [D:\starter-kit\application_builden\application-builde!

File Edit View Calfiow “Search Tools Help
Ci - | (=)= ~ |

(= Workspace 51 & T O [E Calflow (Callflow1)
|& Workspace Settings
s Workspace Variables
.| Workspace Prompts

e
& Workspace Grammars _
> Symvia Control Compositions 1@ st
=+ OpenScape Servers Start of Apy
> Automatic survey g

5] Speaking Clock Application Start
[E] Set Presence State
Get Presence State -

> Weather Application] B Dtmnf

3 Switch Language - Get User

. [5] SimpleIVR =

> Get Input Input C:r."il'l*'e:l
) Pro

In the first page of the deployment wizard as shown above provide the following information:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 57 von 133

U n I F \'jolUr[.r’n-{ierprise

r ~
‘E Application Deployment l_‘ﬂ‘ﬂ_hj

Deployment of Get Input —ry|

Specify the Server Settings for Application Deployment.

You are about to deploy a Symvia Application onte an OpenScape Server.

Since direct Deployment onto an OpenScape Server is currently not supported, a local
Application Deployment Package (an Archive) will be created which afterwards has te be
uploaded to the Server manually.

Specify the local Folder the Application Deployment Package shall be created in.
Target Folder: Di\starter-kit\application_host\deployment Browse...

Specify the Phone Number on the Server under which the Application shall be reached.
Phone Number: 300

Specify the Address of the OpenScape Server the Application uses Services from. In case
the Application does not uses any Services, the Address can be left empty.

Server Address:

< Back [Mext > I [Finish] l Cancel

Folder in which the Media Server Deployment should be created:

For the Starter Kit scenario it is recommended that the selected folder is the same as the Media Server deployment folder:
starter-kit/application_host/deployment

application host = Top level deployment directory for all Media Server components

deployment = The Media Server deployment folder: Contains applications running
on the Media Server

Telephone number, which is used to call the application:

In a standard Starter Kit, the number range 900 - 950 is not used. You may use any number from that range. A server ad-
dress is not required.

Click on finish’ to the create the deployment package with default settings.

For more details about the Deployment wizard please refer to chapter *

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 58 von 133

UNIFY s

Control Compositions

Control Compositions do consist of other controls. They can be compared with subroutines which can be reused easily.
Drawn from the palette to the canvas (work area) they look like other controls.
The Starter Kit comes with 2 examples:

= Change numeric password: Change the PIN of UC user
= Logon: does allow a UC user to logon — this includes the change of the user’s PIN

If you edit a composition you find specific start and end controls (Composition Entry, Composition Exit) on the palette.

= List Iterator: A List Iterator control serves for running through step by step and to execute actions programmed in
a subflow for each of the variables.
The List Iterator is defined in a specifc subflow with the specific controls Subflow Entry, Subflow Exit, Subflow
Loop

= List Sorter: Sort a variable list with sort order and the sort criterion.

= List Modifier: Allows to add or delete elements to or from a variable list.

= String Operator: This control allows to modify strings with 15 operations to select from

= Time Operator: Allows modification of time variables

= Date Operator: Allows modification of date variables

= Parallel Flow: Allows to split a callflow in 2 which can be separately modeled. Example: a callee does have to
accept a calling parties’ transfer to him

Test and Deployment with Sample Application 'Simple IVR", sub chapter Deployment.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 59 von 133

UNIFY s

Check the Media Server console. Wait until you notice that the application is deployed on the server:

15:34:44,185 INFO cycos.connectivity.terminal.impl.TerminalProviderImpl [] Adding
terminal 'GetInput', applet='application:/GetInput’

15:34:44,197 INFO cycos.media.host.tomcat.WebContextComponent [] Deploying Tomcat
WebContext:[GetInput] at:[file:/D:/starter-kit/application_host/work/GetInput-
1.1.1/webcontext]

15:34:44,251 INFO cycos.media.host.container.DeployedComponentImpl [] Compo-
nent:[GetInput-webcontext] initialized in [54] ms!

Start the VolIP softphone. Make sure that it is connected to the Media Server. Check the Prerequisites as described above
for details in regard to the softphone configuration.

Dial the number 900 to call the application. Besides hearing the application, the Media Server log should show the call as
well:

15:55:33,159 INFO connectivity.mcc.sip.impl.MccConnectionManagerImpl [sip.@] Incoming
connection from '<sip:Wolfgang%20Schiffer@10.1.32.129>" to '"900" <sip:900@10.1.32.129>",
offered to 1 listeners

15:55:33,176 INFO af.ivr.ms.applet.CannedApplication [] Loading application properties
[file:/D:/starter-kit/application_host/work/GetInput-1.1.1/conf/symvia.properties.xml]

15:55:33,318 INFO cycos.media.host.container.DeployedComponentImpl [] Compo-
nent:[GetInput] initialized in [146] ms!

15:55:33,332 INFO media.host.binders.terminalbinder.MCCListener [sip.@] Call 'sip.0' will
be handled by application 'application:/GetInput', session 'session:sid.1', terminal
'GetInput’

15:55:33,536 INFO connectivity.mcc.sip.impl.MccConnectionManagerImpl [sip.@] Incoming
connection established. Call Id='YWE1MGE5O0DBiMmQS5NTU2MGZkZjk4N2I1ZmIQZTk1YWU. "

15:55:33,701 INFO cycos.mps.af.api.AbstractRuntime [sid.1 CannedApplet.CannedDialog.@] WF
Session created for application
[com.cycos.mps.af.symvia.ivr.application.SymviaSpeechApplication]: [sid@537e5ff-a9a8-
4a72-84a6-17c50aa%4fle]

15:55:33,705 INFO api.control.general.impl.AbstractSymviaControl [sid@537e5ff-a%9a8-4a72-
84a6-17c50aa9%4fle] Application [Get Input] called

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 60 von 133

15:55:43,195 INFO cycos.mps.af.api.AbstractSession [sid@537e5ff-a9a8-4a72-84a6-
17c50aa94f1le] WF session closed:[DefaultSession(sid@537e5ff-a9a8-4a72-84a6-
17c50aa94f1e;CLOSED; currentControl:null;application:null;isExecuting:true;isJoined:false)

]

15:55:43,317 INFO connectivity.mcc.sip.impl.MccConnectionManagerImpl [sip.@] Disconnected
connection locally

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 61 von 133

UNIFY s

The Grammar Studio is designed to create, edit or analyze Dialog Engine (DIANE) Grammars, which are used in Speech
Applications with Natural Language Understanding (NLU).

This section contains the following content:

= General Overview

Tutorials

Tutorial: Create Grammars for an Application which was made with the Application Builder
Knowledge Base

General Concepts

Grammar Logic

Grammar Components

Improve Grammar Recognitions

Understanding Semantic Results

Application Builder Workspace as Repository Folder
Frequently Asked Questions (FAQ)

= Known Issues

= Recent Wiki Changes

The chapter ‘general overview’ will try to illustrate the features of the Grammar Studio, whereas the ‘tutorials’ will try to
guide you through with the help of examples. The ‘knowledge base’ finally collects chapters about more basic backgrounds.

The FAQ section will collect all interesting questions which can occur and the known issues will allow you to check if there
is something that does not work yet or we are planning to improve.

The main features of the Grammar Studio are creating grammars which can be used in speech-enabled applications, edit
existing more complex grammars and test given grammars in different ways.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 62 von 133

UNIFY i

A grammar file has two purposes. First of all it specifies which (combination of) utterances will be recognized by an applic a-
tion using this grammar. Nevertheless a grammar also defines a kind of return value according to utterance which will be
recognized. This return value will be called the Semantic Result of a specific utterance and can be used to allow some ap-
plication response in regard to a recognized user utterance.

Please review page 120 chapter Knowledge Base: Grammar Components to review the classification of some basic terms.

Please regard that the term application will be used in this section as a synonym for IVR Application which means an appli-
cation with Interactive Voice Response. Furthermore the term grammar will be used as a synonym for a grammar file used
by the Dialog Engine (DIANE) in this section.

DIANE grammars are readable text files using the file extension .grm . The grammars are created and formatted in a spe-
cific internal scheme which is illustrated by the following (simple) example.

$ROOT =
$ACTION:X {: X :}
| $ACTION:X $OBIECT:Y {: X + Y :};

$ACTION =
listen to {: "LISTEN" :}
| record {: "RECORD" :};

$OBJECT =
voicemail {: "VMAIL" :}
| a voicemail {: "VMAIL" :}
| email {: "EMAIL" :}
| an email {: "EMAIL" :};

Figure: Grammar Code in internal scheme

Because the grammar code shown above is not intuitive for everybody the Grammar Studio was introduced to help users
creating and editing grammar files. By using the Grammar Studio you can save the time to study the scheme used by DI-
ANE Grammars files and you do not need to keep track on the correct syntax of your grammar.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 63 von 133

U n I F \'jolUr[e ﬁérprise

When you start the Grammar Studio, the first thing you will have to do, is to select a Repository Folder. The Repository Folder
is the folder you want to work with. In case you use the Grammar Studio to create or edited grammars for applications made
with the Application Builder, you will have to select the Application Builders workspace as your repository folder within the
Grammar Studio.

1 Select Repository Folder o ‘ e — SHICE >

Select a Folder as Repository

Please select the Folder to use as the Applications Repository. This Folder will be used to scan for already existing _)
Grammars as well as default Storage Directory.

Select Repository Folder: | VIPS\private\bro\grammar studic\.workspace-example\appBuilder 01~ | | Browse | | Clean up

[7] Use selected Folder as default and do not ask anyrmaore

Information Details I
(= Detected Type: Workspace for "Application Builder”

Figure 1: Select your Repository Folder

As the previous screenshot shows, the Grammar Studio will check which type of Repository Folder is recognized by your se-
lection.

When you select an Application Builder Workspace as Repository Folder for your Grammar Studio the content of your selection
is presented to you in Repository Explorer which uses the left window of the Grammar Studio Application.

In the stage of maximum extension you can see four different folder icons named Workspace Grammars, Compositions Gram-
mars, Applications Grammars and Standard Grammars in your Repository Explorer like it is shown in the following screenshot.

» = Standard Grammars [Symvia 2.0]

> = Workspace Grammars [5ymvia 2.0]
: (= Composition Grammars [Syrmvia 2.0]
» = Application Grammars [5ymvia 2.0]

Figure 2: Application Builder Workspace as Repository Folder
Depending on your Application Builder workspace the content can differs, of course. In the most cases you will see at least

Applications Grammars and Standard Grammars folders.

The folder containing Standard Grammars is something special, because it offers you those grammars which are officially

supported by any DIANE Environment. These Standard Grammars handle the most common topics like recognition of time
and date utterances. Please regard that Standard Grammars are read-only files and can therefore not be edited. However
Standard Grammars can of course be used in your grammars.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 64 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_repositoryfolder.png?id=dev:sdk:appbuilder:grammarstudio:overview
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_appbuilderrepository.png?id=dev:sdk:appbuilder:grammarstudio:overview

U n I F YO -r e ﬁérprise

Please read the chapter Knowledge Base: Grammar Components for more detailed information on Standard Grammars.

When you explore your Repository Folder you will find tree nodes representing your grammars (ending on the file extension
grm) like it is shown in the following screenshot.

4 [= Application Grammars [Symvia 2.0]
4 [= Appointment
4 [activity (activity.grm)
&= English (United States)
4 @ Names (names.grm)
&= English (United States)
4 [= Autoteile Diller
4 [car_parts.grm
8 German (Germany)
4 [felgenraeder.grm
8 German (Germany)
4 [g motorgetricbe.grm
@8 German (Germany)
4 @ MultiMedia (multimedia.grm)
@8 German (Germany)
» = My TestApp02
» i MyTestApp0l

Figure 3: Language-specific Grammar in Repository Explorer

Please regard that these grammar nodes can also be expanded in the Repository Folder. That means that grammars will be
sub-divided in the context of the Grammar Studio. Each grammar can be seen as kind of container for all languages in which
the selected grammar has been created. If you expand such a grammar (container) you will see at least one icon flag repre-
senting the language (and country) for which this Grammar was designed.

If you double-click these icon flags the corresponding language-specific grammar will be loaded into the so-called Grammar
Working Environment, which represents your working desktop in the Grammar Studio. This working environment will make use

of the right window part and will allow you to edit or analyze your grammar.
By right-clicking on a icon flag an context menu will offer you all possible options for this selected grammar.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 65 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_languagespecificgrammar.png?id=dev:sdk:appbuilder:grammarstudio:overview

UuniFy..:

If you have selected your language-specific grammar and want to start editing, analyzing or just reviewing its content the
so-called Grammar Working Environment is the right choice. It combines four different use-cases into one graphical user
interface separated in four different tabs.

W Gamma: Studio
file Edt Tex Yiew Optons Hep
i I
2 e . multimedia.grm in Gesman (Gemmany)
l| & e i Saimpon Contn]| [T
= Application Grammars
Appointment

Gramemar Nodes ~ || Detsits

Proper Value
& Autotele Diler R
2 o Type Reference Recogntion Nede
| Reference Target actiel
| Reference Location Intermal

Included in Semantic Result Mo

& [Autodio’)

& [Autorodics”]
T ["Multimedia”)
< Mol

Fode single Child in Alternative Node
Edit Structure Show Code Outine| Test against Utterance Generate recognized Utterances.

. Problems 53 | @ Protocol.
Description Source Node Repostory Path
5 Warings (5 ems)
Reposicory Folder
Hame

Type:

Figure 4: Grammar Working Environment

i ST L A . AR e
File Edt Iest Yiew Optons Help -3
(7] » L Ol @
rammar 3 multimedia.grm in Gesman (Germany)

= Workspace Grammars Grammar Code

> Conporion Granmers | $R0OT = Smultimedia_item
ekt Gome | Sartikel Smoltimedia_ites

& Autotele Diler Bartilal = ainer
3 | einen

| eine

| ein

 German (Germany) Smultimedia_item = Radio
My Testhpp02 | Radios
MyTestApp01 | Autoradio

'
'
'
1
'
'
| MPareispieler
| MPareiPlayer
| MPareicerate
| assette
| Kassettenspieler
| ov
| DVDSpieler
| DVDPlayer
| Lantsprecher
| stereo
| Stereosystes
| Sterecanlage
| Mavi
| Maviastion >
Edit Structure | Show Code Outiine Test against Utterance Generate recognized Uttersnces.
2. Problems 57 | @ Protocol

Description Source Node. Repostory Path
5 Wiamings (5 tems)

Repository Folder

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 66 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_grammarstructure_tabbed.png?id=dev:sdk:appbuilder:grammarstudio:overview
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_grammarcode_tabbed.png?id=dev:sdk:appbuilder:grammarstudio:overview

U n I F l—" \'jli.”_fr.[.lr G{L :

Figure 5: Grammar Working Environment

Bl Edt Jet Yiew Optors Help

= Workspace Grammars
Composition Grammars.
Application Grammars
‘ppaintment
& Autotele Diler

& MultMedio (multeredie grm)
= German (Germany)
= My Testhpp02
@ MyTestApp0t

Repostory Folder
Name: oppBui

L O|w
. multimedia grm in Gesman (Germany)

Inchude further Grammars to test

Grammar Name Grammar Path

i 4dd | | X Remove

Direct Test Inpit

Uteance totest: |

Summarized Resut Hstory
Vour Utterance
ch habe ein Radio'

Recognition Status

Allunvecegrezed Parts

Use s Pref Gramenar

Partly Recogeized “eh habe"

Recognition Resut Details

Unerance Recognized _ Semantc Grervense 1D Void
= multimedia true

Edit Structure | Show Code Outline | Test against Utterance Generate recognized Utterances.
£ Problems 57 | @ Protecol
Description Source Node.
5 Wamings (5 tems)

Repostory Path

TR
fr 8w
& Standard Grammars "5 multimedha.gem in German (Germary)
[M Result Count: 300 12 7 Generae Uterances | [25 Eport Resus..
i Appication Grammars Utterance. Semantic Geommar B -
" Aopointment et
o meltirmedia
limedia
- limedia
e i COPayer mitimeda
b T Navigatin’ limedia
= MyTesappat ntennen ulimed
maimedis
e COWechser irnedia
Aukonarigotin iy
MariGerste s
o limecia
1 NevigatinsSystem limecia
 NovigotonsSysteme’ limedia
ane molimedia
e — mulimedia
e dtevgation” mtimeda
e
limecia
limedia
limecia
eine Kassete mitimeda
ciner MPareipicer ulimedia
it StruchureShow Code Dot [T agas Urance | Generte rcogiaed Uerances
£ Problems @ Pretocal
Duscription Source Node Reposton Pith
— Warmings (3 e
Name: appin

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al.

Seite 67 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_testparser_tabbed.png?id=dev:sdk:appbuilder:grammarstudio:overview
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_testgenerator_tabbed.png?id=dev:sdk:appbuilder:grammarstudio:overview

U n I F %'8,— cr’ntér

Figure 7: Grammar Working Environment

There is one tab showing you the tree-based structure of the grammar. Here you can edit your language -specific grammar
content. The next tab allows you to review the grammar code of the corresponding structure while the third tab supports
analyzing the selected Grammar. You can type an utterance and test if your grammar will recognize it. If not, you can direct-
ly enhance the recognition of the grammar without editing it manually. Finally the last tab analyzes a grammar by generat-
ing possible utterance your grammar will recognize.

Editing a grammar with the Grammar Studio will be done by editing the structure of the grammar in a tree-based layout. If
you have double-clicked a language-specific grammar in the Repository Explorer this opens the already mentioned Gram-
mar Working Environment which supports multiple actions separated in different tabs. As entry point the grammar structure
is located on the first tab.

Grammar Nodes “ | Details
4 {5 Grammar *multimedia’ Property Value
4 i Standard Rule Type Reference Recognition Node
> b= [multimedia item] Reference Target artikel
4 B [attikel + multimedia item] Reference Location Intemal

ikel"
ultimedia item”

Included in Semantic Result Neo

m

, E ["M_P_drei Player’]
» EE ["M_P_drei Gerate']
s B ["Kassette'] -

[T Hide single Child in Alternative Node
Figure 8: Grammar Structure

The grammar structure itself is shown to you in the left part of the editor as you can see in the following screenshot. Each
node represents a specific component of the grammar. A grammar will of course consist of different components and there-
fore there are also different types of nodes. According to the type of a node, a node can have child nodes or not.

Please read chapter ‘9.3 Knowledge Base: Grammar Components’ for more detailed information on different component
types of a grammar.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 68 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_grammarstructure.png?id=dev:sdk:appbuilder:grammarstudio:overview

UNIFY e

Grammar Modes
4 fﬁj Grammar “multimedia’
4 £ Standard Rule

multimedia item]

artikel + multimedia item]
“ "artikel"
g "multimedia item"

a4 £ "artikel"

"einer"]

a4 I

- ['C_D._Spieler"]
= ['C_D_Wechsler']
"M_P_drei"]
"M_P._drei_Spieler"]
= ["M_P drei Player"]
= ["M_P_drei Gerite"]
» % ['Kassette"] -

Figure 9: Structure of Grammar in tree-based layout

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 69 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_grammarstructure_treestructure.png?id=dev:sdk:appbuilder:grammarstudio:overview

U n I F \'jolUr[e ﬁérprise

If you select a tree node the properties of this node are shown in the Details pane, which you can see on the right part. The
following screenshot shows the properties of a selected node from type Alternative.

Please read chapter ‘Knowledge Base: Grammar Components’ for more detailed information on Alternative nodes.

Grammar Nodes + ||| Details

4 {31 Grammar "multimedia’ Property Value
4t Standard Rule Type Alternative Node
b & iteml
rtikel + multimedia item]

Semantic Result

Children Count 1

Figure 10: Details of selected node

The properties in the Details pane can directly be edited by double-clicking the corresponding value. The following screen-
shot shows how the property named Semantic Result will be edited in the Details pane.

Please regard the button in the screenshot below. It indicates the possibility to open a dedicated editor for the selected

property.
Property Value
Type Alternative Node
Semantic Result Edit Semantic Result
Children Count 2

Figure 11: Edit a Property

Additionally each tree node offers possible options in a context menu which can be opened by right-clicking the tree node.
Using this context menu is considered as the fastest way to edit a grammar in most cases. Of course the most important
options are also offered in the applications menu under Edit/Grammar Structure/....

Editing a Grammar demands some background information about the different components of a grammar. Although the
Grammar Studio tries to reduce the complexity of editing a grammar, the user should know the meaning and purpose of

those grammar components. To keep the clearness of this section the detailed information on grammar components have
been sourced out.

For further and more detailed information please review the following Knowledge Base: Grammar Components illustrating
the different component types of a grammar.

If you need some more practical hints which guide you through the process of editing by examples, please check out the
tutorials and review the following Tutorial: Create Grammar.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 70 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_grammarstructure_details_marker.png?id=dev:sdk:appbuilder:grammarstudio:overview
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_celleditor_button.png?id=dev:sdk:appbuilder:grammarstudio:overview
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_grammarstructure_details_edit.png?id=dev:sdk:appbuilder:grammarstudio:overview

U n I F %'8,— cr’ntér

If you just like to take a look at the textual code representation in the internal grammar scheme, you can use the option to
view the grammar code.

Grammar Code

| SROOT = $mmltimedia_item a
| $artikel $unltimedia item;

Sartikel = einer
| einen
| eine
1 ein;

$wultimedia_item = Radio
Radios

Autoradio
Autoradios
Maltimedia

Haifi

c»

CDPlayer
CDSpisler
CDWechsler
MPdrei
MPdreiSpieler
MPdreiPlayer
MPdreiGerate
Rassette
Rassettenspisler
VD

i

DVDSpieler

DVDPlayer

Lautsprecher

stereo

Stereosystem

sterecanlage

Navi

Navigation 2

Figure 12: Grammar Code

As you can see in the screenshot above, this option will show you the internal code of your grammar. This is what your
grammar would look like in a simple text editor.

Currently this view does not offer you any additional benefit like direct editing. In a further development of the Grammar Stu-
dio this option will hopefully be enhanced to allow direct (and faster) manipulation of the grammar code for more experi-
enced user.

After you have created a grammar you probably want to test it. If your grammar has several Recognitions or Recognition
References which are used in different Rules it will be quite complicated to predict the complete set of utterances your
Grammar will recognize. Therefore you can analyze the grammar and check some user utterances against it. The following
screenshot shows how this will ook like in the Grammar Studio.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 71 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_grammarcode.png?id=dev:sdk:appbuilder:grammarstudio:overview

U n I F \'jli_)[f; .r’nyerprise

Include further Grammars to test

Grammar Name Grammar Path Use as Prefix Grammar

s Crange rem Usge
Direct Test Input.
Utterancetotest | - Parse Utterance
Summarized Result History

Your Utterance Recognition Status All unrecognized Parts

‘ein Radio"

‘ich habe cin Radio® Partly Recognized “ich habe"
Recognition Result Details

Utterznce Recognized? Semantic Grammar ID Valid

tich habe' [—

‘ein Radic” Yes multimedia true

Figure 13: Analyse user utterances

The previous screenshot illustrates this quite easy way of testing in principle. Simply type in what a user would give as au-
dible input and press the «Parse Utterance» button. Please regard that the current version of the Grammar Studio is case-
sensitive in context of the given user utterance. This means that an user utterance has to match exactly a phrase which is
defined as Recognition in your grammar. The following screenshot shows where you have to type in your test utterances.

Direct Test Input

Utterance to test: | - Parse Utterance

Figure 14: Test input representing user utterance

As a test feedback you will first of all get a summarized three-stepped recognition status. Your grammar can recognize the
given test input partly, completely or not all. In the first case the unrecognized parts of the given test input will be shown to

you. This information can be very useful if you want to improve the recognition of your grammar. The following screenshot
shows up some examples of summarized results.

Summarized Result History

Vour Utterance Recognition Status All unrecognized Parts

“ein Radio”

“ich habe ein Radio® Partly Recognized “ich habe™

Figure 15: Summarized Results

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 72 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_testparser.png?id=dev:sdk:appbuilder:grammarstudio:overview
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_testparser_testinput.png?id=dev:sdk:appbuilder:grammarstudio:overview
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_testparser_resulthistory.png?id=dev:sdk:appbuilder:grammarstudio:overview

U n I F \'jolUr[e ﬁérprise

Additionally you have the option to get some more detailed feedback which will allow a closer look at the un-/recognized
parts. Just select your recognition result in the summarized result table. This will display the corresponding details in a fur-

ther table. For more information about the detailed feedback a Tutorial: 'Analyze Grammar' is planned.| Some sample result Kommentar [JHK2]: Lacking SDK
details can be seen in the following screenshot. Article Tutorial: Analyze Grammar
Recognition Result Details
Utterance Recognized? Semantic Grammar ID Valid
ich habe™
“ein Radio™ Yes multimedia true

Figure 16: Result in Details

If you want to analyze your grammar in combination with other already existing grammars, you will have to include the de-
sired grammars to your current test process. Of course this will not change anything in the te sted grammar itself.

Including grammars for the current testing process can help you out in situation where you know that multiple grammars are
active in the DIANE Runtime at the same time. In fact this is the case for most applications, because in nearly all applica-
tions there will be grammars for different dedicated purposes.

By including other grammars to the test process you can simulate such situations. The following screenshot illustrates
where you can include additional grammars for the current testing.

Include further Grammars to test

Grammar Name Grammar Path Use as Prefix Grammar

Figure 17: Include additional Grammars to Test

Finally the Grammar Studio supports to enhance your grammar directly from within the analyzing process. If you have some
unrecognized parts shown in your result details, the Grammar Studio supports to automatically improve the recognition of
your grammar.

Simply open the context menu by right-clicking on an unrecognized part and select the quick fix option. This will enhance
the tested grammar without any further user action. If you have defined additionally grammars, which are included in your
test, you can also specify one of those grammars to enhance (if they are not read-only ones).

If you need some more practical hints which guide you through the process of analyzing, please check out availability of the

planned [Tutorial: Analyze Grammar. | [Kommentar [JHK3]: As above

After you have already checked that the grammar recognizes your desired (combinations of) utterances, you probably like
to know which permutations of utterances it recognizes furthermore. So another way to test a grammar is by generating the
possible utterances of a grammar. This test can be started as simple as possible. Just select the desired maximum count of
results and press the corresponding button. This process can take some time and differs depending on the complexity of
the grammar.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 73 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_analyzegrammar
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_testparser_resultdetails.png?id=dev:sdk:appbuilder:grammarstudio:overview
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_testparser_additionaltestgrammars.png?id=dev:sdk:appbuilder:grammarstudio:overview
https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_analyzegrammar

Maximum Result Count: 500 [+ [[Generate Utterances | [13 Export Resuts,

Utterance Semantic GrammarTD -
e Antenne” Taimeds
‘einer Autoradios muhimedia L
“einen DVDPlayer multimedia i
‘einer MPdre mutimedia
‘einen NoviGerte" muttimedia
‘ein COPlayer muttimedia
Navigation® muttimedia
“Antennen® mutimedia
‘einer Haifi mutimedia
‘ein COWezhsler mutimedia
‘Autoradios” muttimedia
‘eine DVDPlayer” muttimedia
“Autanavigation" multimedia
‘eine NaviGerdte” mutimedia
‘ein Radios” mutimedia
‘einen NavigationsSystem’ mutimedia
‘einer NavigationsSysteme™ mutimedia
‘eine Radio” muttimedia
‘einen Autanavigation” multimedia
‘ein Autonavigation® multimedia
‘einen MPdreiPlayer mutimedia
‘eine Autoradios” mutimedia
‘einer COVvechsler” mutimedia
‘ein Autoradio” muttimedia
‘ein Navi® muttimedia
‘eine Kossette” muttimedia
‘einen MPdreiSpieler” mutimedia

Figure 18: Generate possible Utterances

The generated list can be exported as a comma separated text file to import it e.g. in Microsoft Excel® for documentation
purposes. Just press the corresponding button and select a target file (name).

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 74 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_testgenerator.png?id=dev:sdk:appbuilder:grammarstudio:overview

UNIFY s

Kommentar [JHK4]:

Hier hatten wir einen Verweis auf
1 nicht vorhandenes 2. Tutorial

This tutorial will give you a detailed view on how to create a grammar. In a closer look it will guide the reader step-by-step

through the process of creating grammars for an application which was made with the Application Builder. TS el S TR () Gl

some tutorials which guide the
reader step-by-step through the
described process. This section
contains the following tutorials:
=Tutorial: Create Grammars for
an Application which was made
with the Application Builder

Within this tutorial we will create several application grammars on different ways. This will give you an overview over the -
=Tutorial: Analyze a Grammar

different possibilities you will have and it illustrate how the interaction of Application Builder and Grammar Studio will work.

We will start in the Application Builder where we will import a sample application which makes use of Natural Language
Understanding (NLU) and therefore will need one or more grammars.

Such a grammar will be used to define the allowed user inputs. Furthermore it can (and will) be used to return the meaning
of a recognized user utterance which we call Semantic Result.

For more information about Semantic Results please review the Knowledge Base: Understanding Semantic Results on
page 126.

The grammars needed by the sample application will be created within this tutorial. On the one hand the tutorial will make
use of the Grammar Studio which is a standalone Rich Client Platform (RCP)-Application. On the other hand it will directly
use the Grammar Wizard which is directly integrated into the Application Builder. This wizard offers you an intuitive way to
create and edit simple grammars, whereas the Grammar Studio offers you more options to edit and test grammars.

To illustrate the interaction between Application Builder on the one side and Grammar Studio on the other side, this tutorial
will also show up how to switch between these two programs. This will especially show you how to create a grammar in the
one application and use or edit it in the other one or vice versa.

The content of this tutorial was split into several pages to keep a better overview. If you start studying the tutorial for the first
time simple read through all the pages in the order of appearance. If you only want to re view one special aspect, dive di-
rectly into one of the following subchapters.

= Step 01: General Preliminaries

= Step 02: Download Sample Application as initial Draft

= Step 03: Import Sample Application into Application Builder
= Step 04: Verify successful import of Sample Application

= Step 05: Configure Sample Application in Application Builder

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 75 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar
https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar
https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar
https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_analyzegrammar

UNIFY s

= Step 06: Introducing the Sample Application

= Step 07: Taking a first insight into the Sample Application
= Step 08: Create a Grammar to recognize User Utterances using the Grammar Studio only

= Step 09: A deeper insight into the Sample Application
= Step 10: Create a customized Garbage Grammar using the Application Builder only
= Step 11: Create a customized Garbage Grammar using the Application Builder and the Grammar Studio

= Step 12: Verify your Work

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 76 von 133

U n I F \'jolUr[e ﬁérprise

First of all we need to install the Media Server Starter Kit if this is not already done. By installing the starter kit an Applica-
tion Builder and a Grammar Studio will be installed on your system in addition to the OpenScape Media Server and a SIP
soft phone. This is described in the chapter Installation & Startup which includes a section to learn how to prepare your
environment, too.

After your development environment is successfully setup, you will have to start up the Media Server. Please review these
instructions to start the Media Server, which will be needed to run your applications which you will create with the help of
the Application Builder.

Furthermore we need to start up the Application Builder to begin this tutorial. Therefore please review the corresponding
page to learn how to start the Application Builder. After you have successfully started your Application Builder your screen
should look similar to this screenshot:

[Appiication Builder - [D: tarterkitiworks [E=E)
Fle Edit View Search Tooks Help
o & D~ 5.
(= Workspace 3 =% =0 =8

M| [z Workspace settings

18 Workspace Variables

[&] Workspace Prompts
[Workspace Grammars
Lt OpenScape Servers

Symvia Control Compositions

, [E] Appointment

» [£] DillerCarSupplies

, [5] ReadTheMeter

» [5] SimplelvR

., [T SpeakingClock

» [E] SwitchLanguage

, [£] WeatherApplication

» [5] WeatherApplicationNLU

3% Outline 2

[2 Problems 22 Ul Bookmarks| 57 Search =0
An outline is not available.

Description Resource Path

This tutorial will guide you through the process of creating and editing grammars for applications using Natural Language
Understanding (NLU). Please regard that creating an application will be not content of this tutorial.

For a guided tour helping you to create an application from the scratch with the Application Builder please review the in-
structions on page 36. Instead this tutorial will make use of a sample application which has to be imported into your local
Application Builder workspace. This application will only be an initial draft representing the fundament of this tutorial. It can

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 77 von 133

https://sdk.cycos.com/dev:sdk:mediaserver:start
https://sdk.cycos.com/dev:sdk:appbuilder:startup_ms
https://sdk.cycos.com/dev:sdk:appbuilder:startup_ab
https://sdk.cycos.com/dev:sdk:appbuilder:step2
https://sdk.cycos.com/dev:sdk:appbuilder:step2
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:appbuilder_en.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:preliminaries

U n I F \'jolUr[e ﬁérprise

be downloaded from the Unify’s Fusion Developer Portal in the same download area where you find the Starter Kit. You
need to download a zip file named as «tutorial_dillercarsupplies_initialdraft.zip» which represents an Application Builder
Archive File. This archived package contains finally our sample application named «Tutorial - DillerCarSupplies (Initial
Draft)».

To import the sample application into the Application Builder you do not need to unzip the downloaded zip package. Just
start the import process by clicking «File/lmport Workspace ltem...» within the Application Builder. This process will include

three steps to follow:

As a first step you will need to select a target platform. Please select «Symphonia Voice Response» as target platform for
the application like it is shown in this screenshot:
25 Import Waorkspace Item

]

Select Target Platform to import from \
. - -
Select the Target Platform to import an arbitrary Workspace E 5]
Ttem from.

Target Platform: | Symphenia Voice Response

[

In the next step you will have to select a zip package as archive file. Please download the Application Builder Archive File
for the initial draft version of our tutorial/sample application and select this zip file on your local hard disk like it is shown in

this screenshot:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 78 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:appbuilder_en_importworkspaceitem_platform.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:import_application

UniFy,

r B
iy Import Workspace Item ‘ EM

Import Workspace ltem into current Workspace \
Specify the local Archive File the Workspace Itemn shall be imported from. E 4 5]

You are about to import a Workspace Item into the current Workspace.

Importing @ Workspace Itemn will add the exported Workspace Item found within the
specified Archive File into the current Workspace. In case the Export belongs to another
Target Platform, the contained Item may be converted for the Symvia Platform.

Import Settings

Specify the Archive File the Workspace ftem will be imported from.

On the next Page you can review the Contents found in the Item Export and you can
specify the Name the Itern will have in the current Workspace.

Archive File: | rs\bro\Desktop\tutorial_dillercarsupplies_initialdraft.zig Browse...

As a last step you have to verify your selection and accept the proposed name of the workspace item which will be created

for your imported application. Please verify all inputs by finishing the dialog like it is shown in this screenshot:
[E=E

Import Workspace ltem into current Workspace \
Check the Contents of the selected Archive File and specify the Name the E 4 E]

Itemn will have in the current Workspace.

This is the Content found in the selected Archive File:

4 Workspace Item
Mame: Tuterial - DillerCarSupplies (Initial Draft) !
Platform: SYMVIA
Type: STANDARD-APP
Version: 2.0

4 Export
Date: Thursday, April 28, 2011 1:03:25 PM CEST
Description:

Workspace Item Mame: Tutorial - DillerCarSupplies (Initial Draft)

Next = Finish] [Cancel N

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 79 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:appbuilder_en_importworkspaceitem_archivefile.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:import_application
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:appbuilder_en_importworkspaceitem_itemname.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:import_application

U n I F \'jolUr[.r’n-{ierprise

After you have successfully imported the initial draft of our sample application «DillersCarSupplies» you (hopefully) will see
a newly created workspace item named «Tutorial - DillersCarSupplies (Initial Draft)». To verify that everything is imported
correctly, your Application Builder workspace has to look similar to the following screenshot:

(= Workspace ¥ i | -
& Workspace Settings
lars Workspace Variables
o] Workspace Prompts
= Workspace Grammars
it Openbcape Servers
Symvia Control Compositions
[E] Appointment
=] DillerCarSupplies
ReadTheMeter
SimplelVR
SpeakingClock
SwitchLanguage
WeatherApplication
[E] WeatherApplicationNLU
& Tutorial - DillerCarSupplies (Initial Draft)
Application Settings
|ms Application Variables
|o| Application Prompts
= Application Grammars
i} Application Resources
g2 DillerCarSupplies

Figure 19: Imported Application

Although the import was successful (at least) an error will be reported for our sample application, because a specific control
references an undefined grammar. On the following screenshot you can see how this error will be reported. Please regard
that this problem was explicitly created for this tutorial and will be solved when we have finished the tutorial.

[?L Problems &3 D:u Bookmarks ‘Cf' Search
1 Error
Description Resource Path

4 T Errors (1 item)
@ Control 'PreSelect’ references undefined grammar 'DillerCarSupplies’ Symvia NLU Control Tutorial - DillerCarSupplies (Initial Draft)/DillerCarSupplies/PreSelect

Figure 20: Missing Grammar

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 80 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:appbuilder_en_sampleapplication_importedapplication.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:verify_import
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:appbuilder_en_sampleapplication_error_missinggrammar.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:verify_import

U n I F \'jolUr[e ﬁérprise

If your Application Builder reports additional problems for our sample application, you probably will have to change the de-
fault application language. In this case an error will be reported, that the application settings do not specify a default lan-
guage. The following screenshot illustrates how this would look like.

[:_ Problems % D] Bookmarks Q"' Search =0
2 Errors
Description Resource Path
E= Errors (2 items)
@ Application Settings do not specify a default language Symvia Application 5... Tutorial - DillerCarSupplies (Initial Draft)/Application Settings/Conf...

@ Control 'PreSelect’ references undefined grammar 'DillerCarSupplies’ Symwia NLU Control Tutorial - DillerCarSupplies (Initial Draft)/DillerCarSupplies/PreSelect

Figure 21: Missing Default Application Language

If your Application Builder does not report this problem, you can skip this chapter at this point and we are ready to go. In the
other case, this chapter will help you to solve this problem.

To solve the problem with the application default language just double-click on this reported error. The Application Builder
will open the Application Settings where you edit the Language Settings. According to the configuration of your Application
Builder you can only select a language as default application language if it was defined as enabled default language within
the Application Builder itself. Please select «English (United States)» as default application language. If this language is
not offered, please enable this language in your Application Builder. By default only «English (United States)» will be sup-
ported by our sample application. The following screenshot shows how to principally select an application default language.

Language Settings

This is the List of Languages currently available inside the Workspace. The Application can enable or disable Languages for
itself.

Every enabled Language will be available during Deployment and will be significant for Problem Reporting. The checked
Languages will be treated as enabled for the Application, by default all the currently available Workspace Languages are

checked.
Select All

Application Default Language: | English {United States) =

Figure 22: Select Default Application Language

After the application default language has been set and the settings were successfully saved, there should be no more re-
ported error for this application and we are ready to go on.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 81 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:appbuilder_en_sampleapplication_error_missingdefaultlanguage.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:configure_application
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:appbuilder_en_sampleapplication_selecteddefaultlanguage.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:configure_application

U n I F \'jolUr[e ﬁérprise

At this point you will need some more background information about our sample application. What is the purpose and what
is done by this sample? Please study the application call flow which is also named «DillerCarSupplies» in the following
screenshot and make a first idea of this application on your own.

R Start

' Start of Application
"Diller Car Supply” z

MNLU based AutoAttendant Apglication SiaeL

licati
application l¢

@ Prompt
Welcome

2 NLU e Biavback Dond) Prompt
PreSelect — Please repeat

i

oA Compare L

Compare recognition result

Playback Done

i

(% Transfer (&, Transfer (% Transfer Q) Prompt
Multimedia Gears/Engine Wheels/Tyres Standard Info

[End

End of Applicaticn

Figure 23: ‘Diller Car Supply’ Application Call Flow

This little IVR application represents a speech-enabled information service for an anticipated retailer of car parts. Cus-
tomers will be welcomed before they will be asked what products they need more information on. The application will ac-
cept the following three different product categories:

= Car Hi-Fi and multimedia
= Gears and engines
= Wheels and tyres

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 82 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:appbuilder_en_sampleapplication_callflow.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:introducing_application

U n I F \'jolUr[entérprise

This means that customers who call this application can request information about for example «Car Radios» which would
be a possible product for the category «Car hi-fi and multimedia». Please keep in mind that this application is speech-
enabled. Thus potential callers will tell the application his or her requests by natural speech.

If those customers request information for a product of one of those categories, the application will try to transfer the cu s-
tomer to an dedicated information desk which is in fact just another phone number in our sample. If there is no device regis-
tered for those phone numbers the transfer will not work and the sample application will end the call. Of course this applic a-
tion logic is neither perfect nor realistic, but it is sufficient for this tutorial.

By now you can define the purpose of our sample application. But what is our concrete task to do now in this tutorial? Let
us take a first deeper insight into the sample application to finally answer this question.

As you can see the in the application call flow shown in Figure 23 this sample application uses a NLU Control which is an
IVR Control supporting the understanding of natural language. Natural language in this context describes an everyday lan-
guage which would be used in a dialog between human beings. This control therefore will enable the application to under-
stand user utterances in natural language and it will enable the application to react on these utterances.

However a NLU Control is not able to understand any user utterance without a grammar. Only a grammar defines the us-
er utterances which the application will recognize. Therefore this grammar has to be created in this tutorial.

Do you still remember that this sample application reported an error that was already mentioned earlier in this tutorial? This
error (Figure 20) occurred, because a specific control references an undefined grammar. If you inspect the screenshot once
again, you will see that this error-reporting control is a NLU Control. - This means that the NLU Control needs a grammar
to recognize user utterances and it already references such a grammar to recognize user utterances. The (only) problem
is that the referenced grammar itself is not available - in other word: Somebody has removed the grammar file (only for
training purposes, of course).

As we know by now, we have to create a grammar to get the NLU Control working again. But what shall this grammar
do and how should it be named? To get answers to these questions let us look once again at the reported error shown in
the screenshot above (Please see Figure 20). Just double-click the reported error to let the Application Builder focus on the
cause of this error. Right away the configuration dialog of the NLU Control will be opened. The following screenshot shows
you how this would look like:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 83 von 133

U n I F \'jolUr[.r’n-{ierprise

peria e =

Change Properties for NLU _

Specify the Recognition Slots to be filled by the User. Each Slot List Entry represents an
Input Value requested from the User.

General [Introduction | Slots | Result | Confirmation | Options | Help |

Recognition Slots
Specify the Recognition Slots that have to be filled from the User.

Each Slot represents a single Input Value that is requested from the User. The Semantic Result of
a Slot's Grammar will be the Value the Slat s filled with.

Recognition Slot List EEEE]
l Recognition Slot Summary
| DillerCarsupplies DillerCarsupplies (Undefined) - 2 announcements [mandatory]

|| [Restore Defauits

Figure 24: Recognition Slots of NLU Control

As you can see the Application Builder will have opened a specific tab named «Slots». This is the place where recognitions
of user utterances will be handled. Each of those slots represents a grammar which not only defines the allowed user utte r-
ance but also defines the meaning of an utterance. Please regard that such meanings are called Semantic Results in the
context of grammars.

If you need more detailed background information about Semantic Results please review the Knowledge Base: Under-
standing Semantic Results on page 126.

But for what will the Semantic Result of this grammar be used now? To answer this question, you have to remember your-
self what the reaction of a recognized user utterance will be. As a reaction our sample application will route the call flow
(from the NLU Control) to specific successor controls. As you remember in this sample these successors were controls
transferring to dedicated phone numbers.

Summarized once again: The NLU-Control in our sample application already defines a «Recognition Slot» which references
a grammar recognizing user utterances. This means our grammar has to make use of Semantic Results, because it has to
return the meaning of a user utterance. This Semantic Result will be used to route the application call flow.

After we know the purpose of the grammar, which we have to create, we finally have to know its name. This is important in
this tutorial, because in this sample application the NLU Control already references a specific grammar name.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 84 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:appbuilder_en_sampleapplication_nlucontrol_recognitionslots.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:insight_application_grammar

U n I F YO -r e ﬁérprise

To reveal the used grammar name we only need to double-click the «Recognition Slot» shown in the screenshot above.
This will open a further dialog to edit this slot. Of course we do not want to change anything but only want to check the used
grammar name. The following screenshot shows how this would look like.

=] Edit Recognit\onw‘ lﬂ

Edit Slot in Recognition Slot List

|
Edit the Name of the existing Recognition Slot and the Grammars and
Announcements used for it. |—

Slot Settings
Slot Name: DillerCarSupplies
Slot Grammar: DillerCarSupplies (undefined)| B

[] Opticnal Slot

Slot Announcements

Playback List of Prompts and Variables le - ﬁ -

Announcement Transformation
5] question prefix
(] question multimedia

Figure 25: Grammar of Recognition Slot in NLU Control

As we can finally see in the screenshot shown above, the grammar of this «Recognition Slot» (the so-called «Slot Gram-
mar») is named «DillerCarSupplies».

As a final conclusion our first task will be to create an application grammar named «DillerCarSupplies». When creating the
grammar we should take the following aspects into regard:

= The grammar has to define all possible utterances of customers of a car parts retailer
= These user utterances can be separated into three different product categories

= Each product category will contain several different products

= The grammar has to return a Semantic Result

= The Semantic Result shall enable routing the application call flow according to the recognized user utterance

Now we are ready to start creating the grammar which is described as our first job in the previous chapter. As mentioned
before there are several ways to do so and one of those will be to start right away with the Grammar Studio.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 85 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:appbuilder_en_sampleapplication_nlucontrol_missinggrammar.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:insight_application_grammar

UNIFY s

Using the Grammar Studio is suggested in the following use cases:

The grammar to create seems to be an extensive or complex one

The grammar shall re-use other non-standard grammars

The grammar shall be manually structured to have a better overview for future developments
You want to test your grammar right away and see what user utterances will be recognized

In this case the grammar to create seems to be a (relative) extensive and complex one. Therefore we should use the
Grammar Studio to create the grammar for our sample application. To begin the process of creating, please start the
Grammar Studio. For a general overview and basic information please review chapter General Overview: Grammar Studio
on page 62.

When starting up, the Grammar Studio which is delivered within the starter kit will use the default workspace of the Applica-
tion Builder as folder to work with. This folder will be called the Repository Folder in the Grammar Studio. The Repository
Explorer will list all found Grammars in this Repository Folder. The following screenshot will show how this would look like.

» = Standard Grammars [Symvia 2.0]
4 [Application Grammars [Symvia 2.0]
: = Appointment
> [DillerCarSupplies
> = WeatherApplicationMLU

Figure 26: All Grammars in Application Builder Workspace

As you see in screenshot above, our sample application is not listed. The reason for that is simple. Our sample application
just does not contain any grammar up to now. Per default application without any grammar are not shown in the Repository
Explorer, but this can be changed. Simply deactivate the filter to hide empty applications as it is shown in this:

[T Hide empty Applications
Repository Folder
MName: workspace

Type: Workspace for "Application Builder®

If you deactivate the filter option to hide empty application grammars, the listed content in the Repository Explorer will
change and also applications without any grammar like our sample application will be displayed as you can see in the fol-
lowing screenshot:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 86 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar#folded_1
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_appbuilderrepository_applications.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_appbuilderrepository_applications_showemptyapplications.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar

U n I F \'jolUr[e ﬁérprise

4 [Application Grammars [Symvia 2.0]

> = Appointment

» = DillerCarSupplies
== ReadTheMeter
= SimplelVR
= SpeakingClock
= SwitchLanguage
(== Tutorial - DillerCarSupplies (Initial Draft)
= WeatherApplication

» = WeatherApplicationMLL

Figure 27: Repository Explorer showing also Applications without any Grammar

Before we start to create a new grammar for our sample application, please remember yourself that any grammar is lan-
guage-specific. This means that there would be a grammar for english content as well as a grammar for german content if
our application would support those two languages. In the Grammar Studio all language-specific contents of a grammar are
collected into one so-called Grammar Container. This container therefore represents a grammar in all defined languages.

As described in the previous passage, we have to create a Grammar Container as a first step. To achieve this you can use
the application menu like it is shown in the following screenshot. Alternatively can you also use the context menu by right-
clicking on the node representing our sample application.

=] | | | & 2| w

Figure 28: Create Grammar Container

Selecting this option will open a dialog where you have to define a name for this Grammar Container. In fact this name will
be used by all language-specific grammars. We will use the name «DillerCarSupplies.grm» here, as we remember the defi-
nition of our first task. The following screenshot shows how this will look like.

=mlplE)

= Create new Grammar Container

Create a new Grammar Container for selected Application

Please select the common Name, This Mame will be used for all
language-specific Grammar Files,

Common Filename: | (WI[EeFTeVT -grm

L __

Figure 29: Select Grammar Name

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 87 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:insight_application_grammar#definition_of_our_first_task
https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:insight_application_grammar#definition_of_our_first_task
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_appbuilderrepository_allapplications.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_menu_addgrammarcontainer.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_creategrammarcontainer_name.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar

U n I F \'jolUr[e ﬁérprise

After creating a Grammar Container named «DillerCarSupplies.grm» we have to create (at least) one language-specific
grammar for this Grammar Container. Please proceed analog to the section above. You can use the application menu show
like it is shown in the following screenshot. Alternatively can you also use the context menu by right-clicking on our previ-
ously created Grammar Container.

| &2 e[gle | | | & 8| &

Figure 30: Create language-specific Grammar

Selecting this option will open a further dialog where we have to define the grammar language. As our sample application is
designed in American English we have to use the Language «English (United States)» here. If our sample application
would support another language, we would have to create a further language -specific grammar. This screenshot illustrates
how the dialog would look like:

.
[Create new Grammar File | (=

Create new language-specific Grammar File

Please select the Language for which your new Grarmmar file =
will be created, —

Select Language: | i[RI B e)] -

[Create H Cancel

|~ ————

The Grammar Studio will now create an empty grammar template which content can now be edited in the needed way. The
following screenshot shows how your Repository Explorer should look like.

4 [Tutorial - DillerCarSupplies (Initial Draft)

4 [g DillerCarSupplies.grm (DillerCarSupplies.grm)
&= English (United States)

Figure 31: Created language-specific Grammar

To start editing just double-click the previously created grammar for american english in the Repository Explorer. Alterna-
tively you can of course use the content menu by right-clicking the language-specific grammar. This will load the grammar
content into the editor like it is shown in this screenshot.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 88 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar#folded_2
https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar#folded_3
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_menu_addgrammar.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_creategrammar_language.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_appbuilderrepository_languagespecificgrammar.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar

U n I F \'jolUr[entérprise

'E| DillerCarSupplies.grm in English (United States) 53 =B
——
Grammar Nodes Details
{31 Grammar "DillerCarSupplies’ Property Value
B Standard Rule Type Grammar
B Name of Grammar DillerCarSupplies

[Hide single Child in Alternative Node

Edit Structure | Show Code Outline | Test against Utterance | Generate recegnized Utterances

Now we are able to edit the content in a tree-based view of the grammar structure. This tree-like overview displays each
grammar component as an own tree node. Because a grammar is constructed by different grammar components, this struc-
ture view will contain several different node types.

Each of those grammar components has a special purpose and meaning. To give you a better overview we have collected
detailed information about all supported grammar components in Knowledge Base: Grammar Components on page the
120. Please review this chapter at least once or open it as an additional browser windows/tab to have direct access to this
information till the end of this tutorial. In general all supported options of a grammar component will be shown to you if you
open the content menu by right-clicking a specific tree node which represents a grammar component.

Divide Grammar Structure logically

As we remember the definition of our first task, this grammar has to define all possible utterances of potential customers. The objects of
those user utterances will refer to three different product categories that we have already defined in this previous chapter.

To keep the grammar open-ended, we should structure the grammar according to these product categories. If the applica-
tion needs to support a fourth product category in future, this could simply be added without refactoring the complete
grammar.

In this case creating an open-ended grammar means to map the grammar structure to the application product categories.
Therefore we have to divide the structure of the grammar logically.

If you did not spend time to review the detailed information about all supported grammar components in the Knowledge
Base: Grammar Components, you will need to know that we have to use Rules to divide the grammar structure into logical
sections.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 89 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:insight_application_grammar#definition_of_our_first_task
https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:introducing_application
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_grammarstructure_emptytemplate.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar

UNIFY s

This means we have to add one Rule for every applications product category. To add a Rule please open the context menu
by right-clicking the parent tree node of possible Rules, which is in fact the node representing the grammar itself. The con-
text menu will offer an option to add a new Rule.

4 Grammar ‘DillerCarSupplies’
4 £ Standard Rule
=8
a BB "NewElement2"
=8
4 BB "MewElement3"
=8
4 BB "NewElementd"

B

Figure 32: Add Rules as logical Division

These generically named Rules should be renamed for a better overview. Because we map these Rules to the applications
product categories, we rename this Rules to «wheelstyres», «gearsengine» and «multimedia». Again please open the con-
text menu by right-clicking a Rule and select the option to edit it. As result a dialog will be opened where you can change
the name of the selected Rule. This screenshot illustrates how this dialog will look like.

- .
T Edit Rule -

Edit the selected Rule

Please select a Name forthe selected | bja |
Rule. L .

| Mame of Rule wheelstyres|

[ok][cance

After renaming all your newly introduced Rules your grammar structure should look it is shown in the following screenshot.

4 Grammar "DillerCarSupplies’
a f8 Standard Rule
=3
a 1 "wheelstyres"
=5
a4 B "gearsengine"
=3
a B "multimedia"

£

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 90 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_grammarstructure_addrules.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_grammarstructure_editrule.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_grammarstructure_addrules_renamed.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar

U n I F \'jolUr[e ﬁérprise

Figure 33: Renamed Rules

Each of these newly introduced logically divisions needs to be filled now with several user utterances, which a potential cus-
tomer could use while interacting with the application. A possible start for editing the grammar would be the product categ o-
ry handling wheels and tyres.

If you want to add possible user utterances for a category, we have to regard the conte xt of this grammar in our sample ap-
plication. In our sample application the grammar will be used to recognize a product of a specific category (e.g. «wheels
and tyres») to route the further application call flow.

Therefore we have to think about the question: What are possible products a customer could ask for in this category?
As possible answers to this question could have replied for example the following phrases (in the case of the category
«wheels and tyres»):

«Wheels»,

«Rims»,

«Aluminium wheels»,
«Steel rims»,

etc...

After collecting possible user utterances, we now will try to add those possible user utterances to the grammar. Please do
not forget corresponding singular versions of those phrases to support a little more variety.

If you did not spend time to review the detailed information about all supported grammar components in the Knowledge
Base: Grammar Components, you will need at least a basic summary of the relation between the needed grammar compo-
nents. For a general proceeding you have to know that the entry point of our grammar will be the so-called Standard Rule.
Like every (other) Rule it can consists of one or more Alternatives. Finally an Alternative can contain one or more user ut-
terances.

As described above, we need to do the following for every user utterance:

e Step Al: Add an Alternative to a Rule (or use an empty Alternative)
e Step B1: Add a Recognition of the user utterance to the previously created Alternative

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 91 von 133

UNIFY s

Because each newly introduced Rule (see Figure 5.2) already offers an empty Alternative we can skip Step Al for the first
user utterance and start right away with adding a Recognition to this Alternative in Step B1.

Just right-click on the tree-node representing the empty Alternative to open the context menu and select the option to add
an Recognition. This will open a dialog where you can define the utterance the grammar will recognize. The following
screenshot illustrates how this would look like.

i Edit Recognition =5

Edit the selected Recognition —

Please define an utterance phrase that should be | bJa |
recognized. L 4

Recognition: Whee|s|

OK l I Cancel

|

Adding the user utterance «Wheels» as a first Recognition will change the grammar structure. The following screenshot
shows how this would look like.

Fi Grammar DillerCarSupplies’
a t8 Standard Rule
B
a 8 "wheelstyres"
a T ["Wheels"]
] "Wheets”
4 {1 "gearsengineg”
2
a4 1 "multimedia"

£

Figure 34: Added Recognition

To add the next user utterance we have to create a new (and empty) Alternative first (Step Al). Therefore just open the
context menu of the current Rule by right-clicking on the tree node which represents this Rule.

The Rules context menu will offer you the option to add a new Alternative. Please proceed analog with this empty Alterna-
tive (Step B1) like it was already described above.

After adding Recognitions for all collected user utterances (and their singular versions) your grammar will look like the fol-
lowing screenshot.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 92 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar#folded_5
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_grammarstructure_addrecognition.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_grammarstructure_recognition.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar

UNIFY s

4 Grammar ‘DillerCarSupplies’
a4t Standard Rule

=3
a B "wheelstyres"
2 b ["Wheels"]
» B ["Rims"]
> B ["Aluminium wheels"]
» B ["Steelrims"]
. B ["Wheel"]
- B ["Rim"]
. I ["Aluminium wheel"]
> B ["Steel rim"]
a 8 "gearsengine”
=3
a B "multimedia”
[£3

Figure 35: User Utterances of one Product Category as Recognitions

Please proceed analog with the other Rules. Each Rule represents a logically devision and includes several products
which a potential customer could ask for in the given category. The following list contains the products which have to be
recognized in the specific Rules:

Products to recognize in Rule «gearsengine»

L] «Motors»,
= «Gear boxes»,
= «Injections»

Products to recognize in Rule «multimedia»

= «Car radios»,
= «Amplifiers»

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 93 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_grammarstructure_severalrecognitions.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar

The following screenshot shows how the grammar structure should look like after you have added all potential user utter-
ances.

4 Grammar ‘DillerCarSupplies’
a tH Standard Rule
B
a 1 "wheelstyres"
["Wheels"]
["Rims"]
["Aluminium wheels"]

]

["Steel rims"]

.t ["Wheel"]

["Rim"]
["Aluminium wheel"]

- ["Steel im"]

&) @) oy) o

4 1 "gearsengine”
["Mators"]
["Gear boxes"]
["Injections"]
["Motor"]
["Gear box"]
== ["Injection”]

(R R R R L~

& a

a B "multimedia”

)

["Car radios"]
B ["Amplifiers"]
+ Tt ["Car radic"]
& ["Amplifier"]

Figure 36: All User Utterances as Recognitions

By now, we have mapped the grammar structure to the applications product categories. The grammar structure is separat-
ed into three different logical divisions each represented by one Rule. However this grammar will not recognize any of those
defined user utterance, because there is still something missing.

If you did not spend time to review the detailed information about all supported grammar components in the Knowledge
Base: Grammar Components, than you will need the following basics about how to include Rules. You have to distinguish
between the declaration of a Rule and the usage of a Rule. The declaration of our Rules is already done, but there are not
used/included by anybody. To include an already declared Rule to a grammar we have to make use of it by defining a ref-
erence to this Rule.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 94 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_grammarstructure_allrecognitions.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar

U n I F \'jolUr[entérprise

The entry point of each grammar will be its so-called Standard Rule. No other Rule will be taken into regard per default if
this Rule is not used.

In our grammar this Standard Rule contains only an empty Alternative so far. This means that this grammar will recognize
simply nothing, because the Standard Rule does not make use of any of our previously defined Rules. To keep it short:
The references to those previously defined Rules are still missing in the Standard Rule.

Let us take a look at the Standard Rule. Here we have to edit the grammar structure to include the three previously de-
clared Rules. Because each of those Rule represents an applications product category, each Rule has to be seen as one
own possible variation in the context of our sample application. A potential customer could just request information about a
product of the first category or of product of the second category or of the third category. This disjunction of different vari-
ants is perfectly reproduced by the grammar component Alternative.

As described above, we need to do the following for every Rule, which we want to include:

= Step A2: Add an Alternative to the Standard Rule (or use an empty Alternative)
= Step B2: Add a Recognition Reference to the previously created Alternative. The reference target will be the Rule,
which we want to include

Because the Standard Rule (see Figure 5.2) also offers an empty Alternative we can skip Step A2 for the first reference and
start right away with adding a Recognition Reference to this Alternative in Step B2.

Just right-click on the tree-node representing the empty Alternative to open the context menu and select the option to add
an Recognition Reference. This will open a dialog where you can select one of our Rules as a reference target.

p S

Edit the selected Recognition Reference

.
[im] Edit Recognition Reference

Please select a new target for the selected Recognition Reference. bla

Select new Reference to..

@ Rule in current Grammar -
() External Grammar std_cancel (Standard Grammars / Cancel) -
oK l ’ Cancel

The screenshot above shows how to set a Rule as target of a reference in principle.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 95 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar#folded_6
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_grammarstructure_addrecognitionreference.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar

UNIFY s

Using the Rule «wheelstyres» as reference target of a first Recognition Reference will change the grammar structure. The
following screenshot shows how this would look like.

4 Grammar "DillerCarSupplies’
a fH Standard Rule
a4 B [wheelstyres] returns [Return of Rule'wheelstyres']
g "wheelstyres"
» B "wheelstyres"
> EE "gearsengine”
» B "multimedia"

Figure 37: Added Recognition Reference

To add the next reference we have to create a new (and empty) Alternative first (Step A2). Therefore just open the context
menu of the current Rule by right-clicking on the tree node which represents this Rule.

The Rules context menu will offer you the option to add a new Alternative. Please proceed analog with this empty Alterna-
tive (Step B2) like it was already described above.

After adding Recognition References for all previously created Rules your grammar will look the following screenshot.

4 Grammar 'DillerCarSupplies”
a tH Standard Rule
a4 B [wheelstyres] returns [Return of Rule'wheelstyres']
4 "wheelstyres"
4 T [gearsengine] returns [Return of Rule'gearsengine']

@ "gearsengine"
a4 B [multimedia] returns [Return of Rule'multimedia']

i "multimedia”
. B "wheelstyres"
. £} "gearsengine”
» B "multimedia"

Figure 38: All Recognitions References

By now our grammar makes use of all previously declared Rules. Therefore the grammar will recognize several different
kinds of user utterances. It will recognize all user utterances defined in the Rule «wheelstyres» as well as all user utteranc-
es in the Rules «gearsengine» and «multimedia».

Although this sounds quite well, the grammar still does not completely fulfill the requirements we previously had defined. As
we remember the definition of our first task once again, this grammar will be used to route the application call flow. This

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 96 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:insight_application_grammar#definition_of_our_first_task
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_grammarstructure_recognitionreference.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_grammarstructure_allrecognitionreferences.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar

U n I F \'jolUr[e ﬁérprise

means, that the application has to react to the user utterance which was recognized by the grammar. To achieve this, we
have to define a kind of return value for this grammar which is the so-called Semantic Result.

Before we start to update our grammar, we have to think about how this Semantic Result should look like. Please remember the applica-
tion call flow which was already referenced in a previous chapter.

8 Start
Start of Application

"Diller Car Supply”

NLU based AutoAttendant
application \
@ Prompt
Welcome

a2 NLU e —— Q Prompt

PreSelect -~ 1 Please repeat

Multimedia A, Compare k

Cormpare recognition result

ack Done

Y

(=, Transfer (=, Transfer (=, Transfer @ Prompt
Multimedia Gears/Engine Wheels/Tyres Standard Info

[End

End of Application

As you can see in this call flow, the sample application uses a NLU Control before a comparison of internal variables takes
place to finally route the application call flow to one of the different Transfer Controls. In more details this means, that the
application asks the user about a product out of three different categories first. If the user response was recognized, the
application has to check what product category the user response was about and then react to this user response.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 97 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar#folded_7
https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar#folded_7
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:appbuilder_en_sampleapplication_callflow.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar

U n I F \'jolUr[e ﬁérprise

As a conclusion, we can define, that our grammar has to return a value that indicates the category of the product, which the
user gave as response.

Because our sample application already defines what this value has to look like, you should not select a value on your own.
The following screenshot shows the properties of the Compare Control used by our sample application to route the call
flow. This screenshot will display the values we have to use:

| Properties & ‘ l&]

Change Properties for Compare —
I
Specify the Rules with their left Values, Operators and right Values, Each Rule List Entry

will represent an additional Event of the Control.

General | Rules

Comparison Rule List ﬁ
i MName Comparison Statement
2] Multimedia 'PRESELECT form/DillerCarSupplies' is equal to 'multimedia’
WheelsAndTyres 'PRESELECT form/DillerCarSupplies’ is equal to ‘wheelstyres’
GearsAndEngine 'PRESELECT .form/DillerCarSupplies’ is equal to 'gearsenging’
1
Restore Defaults OK] ’ Cancel Applh
(|
e =—— — — = = |

As you can see in the screenshot above, the Semantic Result of our grammar is expected to look like the following:

= «wheelstyres» for all products in the category Wheels and tyres
= «gearsengine» for all products in the category Gears and engines
= «multimedia» for all products in the category Car hi-fi and multimedia

If we want to add those values as results of our grammar, we will have to add several Semantic Results as grammar com-

ponents.
If you did not spend time to review the detailed information about all supported grammar components in the Knowledge
Base: Grammar Components, you will need to know that we have to edit an Alternative to define/create a Semantic Result.

Each Semantic Result is only valid for the Alternative it is defined for.

As described above we have to edit the Alternatives of our previously introduced logically divisions. As you remember these
division were represented by different Rules. Therefore we will edit all Alternatives in those Rules like the following:

= Add «wheelstyres» as Semantic Result of all Alternatives in the Rule named «wheelstyres»
= Add «gearsengine» as Semantic Result of all Alternatives in the Rule named «gearsengine»
= Add «multimedia» as Semantic Result of all Alternatives in the Rule named «multimedia»

Let us start with the first Alternative of the Rule named «wheelstyres». Please open the context menu by right-clicking the
Alternative and select the option to edit the Semantic Result of this Alternative. This will open an further dialog. The follow-
ing screenshot shows how this dialog will ook like:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 98 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar#folded_8
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:appbuilder_en_comparecontrol_properties.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar

U n I F \'jolUr[e ﬁérprise

Sl

Edit the Semantic Result of the seletected Alternative

[Edit Semantic Result of Alternative &J

Please edit the Semantic Result for the selected Alternative. You can add new Literals ,-j
or References to other Semantic Results, i

Please define the Semantic Result

Semantic Results Denotation

Semantic Result

0K] ’ Cancel

Figure 39: Dialog to edit the Semantic Result of an Alternative

Editing a Semantic Result will be done analog to the editing of the other grammar components. Please open the context
menu of the node representing the Semantic Result by right-clicking this node. Within this context menu please select the
option to add a text. This will open a further dialog allowing you to define a textual result like «wheelstyres». This screen-

shot will show you this dialog:

r — — ™
75 Edit Semantic Result Text - . [

Edit the selected Semantic Result Text —

Please define a Text that will be included in the | bla |
Semantic Result. I .

| Semantic Result Text: wh eelstyre5|

[OK l [Cancel

Adding this textual content to your Semantic Result will cause that this text content will be returned if this Alternative match-
es the recognition of a user utterance. The Semantic Result will then look like the following screenshot:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 99 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar#folded_9
https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar#folded_9
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_grammarstructure_editsemanticresult.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_grammarstructure_editsemanticresult_addtext.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar

U n I F YO -r e ﬁérprise

r B
|z Edit Semantic Result of Altemative‘ ‘ S Lé]

Edit the Semantic Result of the seletected Alternative

Please edit the Semantic Result for the selected Alternative. You can add new Literals or =/
References to other Sernantic Results, —
Please define the Semantic Result
Semantic Results Denotation
4 Semantic Result [
"wheelstyres” Adds the Text "wheelstyres” to this Semantic Result.

|
L Q

Figure 40: Semantic Result of an Alternative

If you apply this dialog, your grammar structure will be changed and the previously created Semantic Result will be added
to the current Alternative. As you can see in the following screenshot the current Alternative indicates its Semantic Result
with the keyword ...returns....

4 Grammar "DillerCarSupplies”

. B3 Standard Rule

4 B "wheelstyres"
> B ["Wheels"] returns ["wheelstyres"]
- I ["Rims"]
o B ["Aluminium wheels"]
. T ["Steel ims"]
- B ["Wheel']
- B ["Rim"]
o B ["Aluminium wheel"]
» B ["Steel im"]

. 8 "gearsengine"

. B "multimedia”

Figure 41: Alternative with Semantic Result

Please proceed analogue with all other Alternatives in the previously created Rules.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 100 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_grammarstructure_semanticresult.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_grammarstructure_alternative_semanticresult.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar

U n I F YO -r e ﬁérprise

a ‘Grammar 'DillerCarSupplies’

4 i Standard Rule
» Tt [wheelstyres] returns [Return of Rule'wheelstyres']
» T [gearsengine] returns [Return of Rule'gearsengine']
» 't [multimedia] returns [Return of Rule'multimedia’]

2 8 "wheelstyres"
o T ["Wheels"] returns ["wheelstyres"]
. T ["Rims"] returns ["wheelstyres"]
ot ["Aluminium wheels"] returns ["wheelstyres"]

= ["Steel rims"] returns ["wheelstyres"]
2= ["Wheel"] returns ["wheelstyres"]
. = ["Rim"] returns ["wheelstyres"]

ot ["Aluminium wheel'] returns ["wheelstyres"]

Fri

. T ["Steel rim"] returns ["wheelstyres"]
a4 {8 "gearsengine"

» T ["Motors"] returns ["gearsengine"]

. T ["Geor boxes"] returns ["gearsengine”]

. 1= ["Injections"] returns ["gearsengine”]

. T ["Motor"] returns ["gearsenging”]

. T ["Geor box'] returns ["gearsengine”]

» 't ["Injection"] returns ["gearsengine”]
4 B "multimedia”

» & ["Car rodics"] returns ["multimedia”]

» t: ["Amplifiers"] returns ["multimedia”]

. &= ["Car rodic"] returns ["multimedia”]

.t ["Amplifier'] returns ["multimedia"]

This screenshot illustrates how the grammar structure will look like after adding Semantic Results to all corresponding Alternatives.

...Congratulations! We have successfully done our first job! The final grammar «DillerCarSupplies» fulfills all the require-
ments we defined in an previous chapter.

Although we have finished our grammar we still have to execute a final operation. Because we created this grammar with
the Grammar Studio, we have to tell the Application Builder how to access it. Therefore we need to switch to the Applica-
tion Builder and import our previously created grammar as an Application Grammar to our sample application.

Please open the Application Grammars within the Application Builder and select the option to add a new one. This screenshot illustrates
the corresponding dialog.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 101 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar#folded_10
https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar#folded_11
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_grammarstructure_allalternatives_semanticresult.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar

U n I F \'j(f;ll[_llr-[enterprise

All Symvia Application Grammars laz =|

This is the List of currently defined Grammars for Tutorial - DillerCarSupplies
(Initial Draft)’ including the defined Workspace Grammar Aliases, Each of the
Grammars is shared by every Item of the Application.

Add...

Delete

Import Grammars from another Application...

= Import Grammar Specification Files into the Application...

This will open a further dialog requesting some properties for the new Application Grammar which are needed in the context
of the Application Builder. These properties include a name, a description and the reference to a grammar file. This gram-
mar file reference represents the connection to our grammar which we created in this tutorial. Therefore the file reference
needs to be set to our previously created grammar. The following screenshot shows how this dialog will look like.

i ™
|z Select Grammiar File :“ l&]

Select Specification File for the Grammar

Select the Grammar Specification File to be used for the Grammar. The File should exist for =)
all Languages currently available in the Workspace, =

DillerCarSupplies.grm

[Only show those Files that are available for every Workspace Language

| S = ——————

Figure 42: Select Grammar File

After we selected our grammar named «DillerCarSupplies.grm» as file reference for the Application Grammar the Applica-
tion Builder is able to access our grammar. The following screenshot displays all set properties of the Application Grammar
«DillerCarSupplies» which represents our grammar «DillerCarSupplies.grm» in the context of the Application Builder.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 102 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:appbuilder_en_applicationgrammars_empty.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:appbuilder_en_applicationgrammars_addgrammar_selectfile.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar

U n I F \'jolUr[entérprise

.
[Create Symvia Application Grammar @

Set Properties of the Application Grammar

Specify Mame and Description of the new Symvia Application Grammar. Additionally you =)
can specify the corresponding Grammar Specification File, Sl

Grammar Mame: DillerCarSupplies

Grammar Description: Grammar to recognize a customer request and route the application ca\lflow{

Grammar File: DillerCarSupplies.grm B

Figure 43: Add Grammar to Application Builder

Finally the Application Builder is now able to access our grammar via this added kind of facade. This will trigger the Applica-
tion Builder to update its reported problems. As you remember there was a reported error because an Application Grammar
named «DillerCarSupplies» was missing. By importing our grammar into the Application Builder we solve this problem:

B_ Problems &% U]I Bookmarks Q;' Search =08
1 Error
Description Rescurce Path
& T Errors (1 item)
@ Control 'PreSelect’ references undefined grammar 'DillerCarSupplies’ Symwia NLU Centrol Tutorial - DillerCarSupplies (Initial Draft)/DillerCarSupplies/PreSelect

After we successfully created a grammar to recognize the utterances of potential customers with the Grammar Studio and
finally imported this grammar into the Application Builder Workspace what is next on our list of tasks?

Well, the created grammar does actually recognize only some single key phrases that a customer could use to communi-
cate with this sample application. And in fact the recognition of those key phrases or words is sufficient enough to allow the
desired application call flow routing according to a specific user utterance. But there is still something missing. Do you
have an idea what this could be?

One very important aspect is not supported yet by our sample application. This aspect is the understanding of natural lan-
guage. Natural language means in this case that our sample application should understand a customer who speaks like he
does in everyday life.

Would you suggest customers only speaking in single (key)words? If you think of everyday life you probably would not only
reply a single key phrase like «car radios!» on a question asking on which topic you would like more information about. In

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 103 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar#folded_12
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:appbuilder_en_applicationgrammars_addgrammar.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:appbuilder_en_sampleapplication_error_missinggrammar.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar

U n I F \'jolUr[entérprise

normal conversations you perhaps would answer something like «I would like to have more information about car radios,
please».

The grammar which we created in the last chapter only recognizes single key phrases. If we want to support the under-
standing of (more) natural language, we have to enhance the application in relation to the recognition of user utterances in
more natural expressions.

Supporting the understanding of natural language can again be achieved on several different ways. One possibility would
be to simply edit the previously created grammar and enhance it in the requested way.

Another more effective (and a little more cooler) possibility is to introduce some additional so-called (customized) Garbage
Grammars.

Before we go on with the definition of Garbage Grammars, let me first give you a structural overview that you will need later
on.

To support Natural Language Understanding (NLU) the Application Builder makes use of the so-called Dialog Engine (DI-
ANE) which comes along with a set of so-called Standard Grammars. These Standard Grammars define a set of gram-
mars which can be re-used by any other application to recognize a set of basic expressions like e.g. time data or
dates. Furthermore these Standard Grammars also include some basic Garbage Grammars.

Please review chapter Knowledge Base: Application Builder Workspace as Repository Folder on page 129 to get more de-
tails about Standard Grammars.

By now you probably will ask yourself, what these already mentioned Garbage Grammars are and what is meant by cus-
tomized ones? Let us start with the differentiation between customized and standard Garbage Grammars. Customized
Garbage Grammars are just personal refinements or improvements of some standard Garbage Grammars, which are
supported by the Dialog Engine (DIANE) within its package of Standard Grammars. Please regard that we will use the ex-
pression «Garbage Grammar» as a synonym for customized or standard ones in the following sections.

Now let us take a look when (standard or customized) Garbage Grammars are used and what they are used for. Garbage
Grammars, are grammars which will be activated in the DIANE environment in addition to the main grammar handling the
recognition of key phrases. This means that the recognition of user utterances will not be done by one single grammar for
its own, but it will be done by one recognizing grammar and at least one or more customized Garbage Grammars.

The recognizing grammar takes care of the key phrases and returns some Semantic Result whereas customized Garbage
Grammars are only responsible to enable the understanding of all other parts of an utterance. These additional parts of an
user utterance do not have any key phrases and therefore represent a kind of filling waste (garbage).

Summarized once again: Garbage Grammars contain no key phrases in any application context. Their content repre-
sent only a kind of filling waste. As a conclusion Garbage Grammars do only filter their defined filling waste. There-
fore Garbage Grammars do not return anything useful that could be used to route an application call flow. Finally
this means that (customized) Garbage Grammars do not have any Semantic Result.

The following figure illustrates the distinction between a key phrase and some additional (garbage) parts of an utterance in

the context of our sample application. The figure also shows how to get logical fragments out of a phrase in principle and
how these fragments can be categorized.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 104 von 133

U n I F YO -r e ﬁérprise

LOGICAL FRAGMENTS «l would like to have details about» «car radios» «please»
Leading part® «l would like to have details about»

Key phrase’ «car radios»

Inner part* «please»

Figure 44: Distinction between key phrase and additional parts of an user utterances

As you can see in figure 1.1 (customized) Garbage Grammars are used to support the understanding of leading or inner
parts of an user utterance which do no contain any key phrases.

As a best practice grammars should be designed in a way that they can easily be enhanced in future. Transfered to the e x-
ample shown in figure 1.1 this means that there would be one customized Garbage Grammars defining several synony-
mous leading parts and another customized Garbage Grammars defining several synonyms usable as inner parts.

As a final conclusion our second job will be to create customized Garbage Grammars. These grammars will filter out filling
waste contained in user utterances. This filtering will support the understanding of a more natural language spoken in com-
plete sentences. When creating the customized Garbage Grammars we should take the following aspects into regard:

= There will be two Garbage Grammars

= There is a need to create a customized Garbage Grammar for leading garbage
= Thereis a need to create a customized Garbage Grammar for inner garbage

= Each Garbage Grammar should contain several synonyms

Now we are ready to start creating the customized Garbage Grammars which were described as our second job in the pre-
vious chapter. As mentioned before there are several ways to do so. Our first job was done by using only the Grammar
Studio. This time we will do different and use the Application Builder as our only editor.

2 Leading part of an utterance without any key phrase indicating garbage
3 Key phrase in context of our sample application

“ Inner part of an utterance without any key phrase indicating garbage

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 105 von 133

UNIFY s

Using the Application Builder is suggested in the following use cases:

= You want to create a customized Garbage Grammar
= The grammar does not re-use other non-standard grammars
= The grammar structure is not important

In this case the grammar to create will be a customized Garbage Grammar. Therefore we should use the Application Build-
er, because this is the most efficient way to do it.

As you remember our second job includes the creation of two customized Garbage Grammars. One grammar will be used
for leading garbage and one grammar will be used for inner garbage. In this chapter we want to create only one of this. Let
us begin with the customized Garbage Grammar for leading garbage.

The Application Builder offers an implicit way to create such a customized Garbage Grammar. This implicit way is hidden in
the NLU Control. Please check out the NLU Control in our sample Application.

If you double-click this NLU Control the control properties will be opened as an own dialog. As you can see on the first tab
of this dialog the NLU Control offers an option to test the speech recognition setup. This following screenshot shows how to
find this option.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 106 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:insight_application_garbagegrammar
https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_customizedgarbagegrammar_appbuilder#folded_1

U n I F YO -r e ﬁérprise

_— =

Change Properties for NLU [——
I
Change the General Properties for the Control of Type NLU.

-
| Properties

General | Introduction | Slots | Result | Confirmation | Options | Help |

Mandatory

I MName: PreSelect

Description: Find out about the callers intention

Il | [C]Enable Runtime Tracing

Menu Parameters

Menu Timeout (Seconds): 10 =

Menu Repetitions (No Entry): 3 =
(l

Menu Repetitions (Invalid Entry): 3 = l
; Test Setup

In case of a reasonable and valid Configuration, the Speech Recognition Setup

can be tested by recognizing Utterances entered via Keyboard. H

ITest Speech Recognition Setup...l

) (e [2

Please remember yourself that the NLU Control supports the activation/usage of two optional Garbage Grammars in addi-
tion to one mandatory grammar handling the recognition of key phrases. If the Garbage Grammars for leading and inner
garbage are defined within the NLU Control, all three grammars will be activated and used to recognize user utterances.

By default each NLU Control will already make usage of standard Garbage Grammars for leading and inner garbage.
These Standard Grammars are a very generic definition of possible parts of an user utterance containing no key phrases. In
general an application designer should create own customizations of those standard Garbage Grammars. These so-called
customized Garbage Grammars should define some more application-specific garbage.

Please review this previous chapter once again for more detailed information about the definition of garbage in general, of Garbage
Grammars at all and about the difference between customized and standard ones.

Now, if you select the option to test the speech recognition setup on the first tab of the NLU Control, a new dialog will be
opened. This dialog can be used for testing purposes, because it allows you to simulate if possible utterances would be
recognized by the set of grammars defined by the NLU Control.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 107 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:insight_application_garbagegrammar
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:appbuilder_en_nlucontrol_testrecognition.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_customizedgarbagegrammar_appbuilder

U n I F YO -r e ﬁérprise

Fortunately we already spent a lot of time in the design of our (main) grammar (named «DillerCarSupplies.grm») handling
the recognition of key phrases, which we realized as our first job in this tutorial. Therefore we will use this testing dialog only
to check what application-specific garbage content is not recognized by the standard Garbage Grammars, which are acti-
vated by the NLU Control by default. The following screenshot displays the successful recognition results when we test one
of our key phrases like «Wheels».

Please regard that all test inputs will be case-sensitive. This means that your test input should exactly match the inputs
shown in this tutorial.

—_——
% Test Speech Recognition Setup -

Test the current Speech Recognition Setup

Verify the Control's current Speech Recognition Setup by retrieving the
concrete Recognition Results of different Utterances,

Enter an Utterance expected to be said by a Caller during Runtime. The Utterance
will be recognized according to the current Speech Recognition Setup using the
Grammars of the selected Language.

Recognition Settings

Language: | English (United States) -

Utterance: m ~ | Recognize

Recognition Result

Utterance Grammar Result
v Wheels DillerCarSupplies wheelstyres

Figure 45: Successful Recognition of a Key Phrase

As we can see in the screenshot above key phrases like «Wheels» will be already recognized. In fact that means that our
main grammar (hamed «DillerCarSupplies.grm») works fine. However this is not sufficient at all and does not support the
understanding of natural language. If someone asks you on which topic you would like to have more information about, you
probably will not answer «Wheels» but for example «I am looking for Wheels».

If you try this possible user utterance in the testing dialog, you will get the result that the leading part «I am looking for» is
not recognized by any active grammar. This would be a good first candidate for our customized Garbage Grammar han-
dling leading contents, don't you think? The following screenshot shows the unsuccessful recognition of non-defined leading
garbage.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 108 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:appbuilder_en_nlucontrol_testrecognition_validsample.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_customizedgarbagegrammar_appbuilder

UNIFY e

—_——
. Test Speech Recognition Setup -

Test the current Speech Recognition Setup " el
Verify the Control's current Speech Recognition Setup by retrieving the » 9
concrete Recognition Results of different Utterances, " d

Enter an Utterance expected to be said by a Caller during Runtime. The Utterance
will be recognized according to the current Speech Recognition Setup using the
Grammars of the selected Language.

Recognition Settings

Language: | English (United States) 2

Utterance: Iam looking for Wheels

Recognition Result

Utterance Grammar Result
i ? Tam looking for il
v Wheels DillerCarSupplies wheelstyres

Figure 46: Unsuccessful Recognition of non-defined leading Garbage

So, let us add the expression «l am looking for» as an application-specific leading garbage. Simply use the garbage can
symbol to define the selected expression as garbage. This will open a further dialog requesting you to select if this expre s-
sion should be regarded as leading or inner garbage. The following screenshot illustrates how this dialog will look like.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 109 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:appbuilder_en_nlucontrol_testrecognition_leadinggarbage.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_customizedgarbagegrammar_appbuilder

U n I F \'jolUr[.r’n-{ierprise

“. Add Utterance to Garbage Grammar h ‘-:" |
Add an Utterance to the used Garbage Grammar (¥
9 F::-x‘
Add the Utterance that could not be recognized to the currently used 9
Garbage Grammar. 7

You are about to add Text Tam looking for' to the Garbage Grammar currently
used by the Control. If the Text is added to the Garbage Grammar, it will be treated
as unimportant Content and thus will be ignored in the User's Utterance in Future.

The Text can either be added to the Grammar for leading Garbage (that filters
Content from the Beginning of the User's Utterance) or to the Grammar for inner
Garbage (that filters Content from within and the End of the User's Utterance).

(@)iAdd Text to Grammar for leading Garbage
() Add Text to Grammar for inner Garbage

The Control is currently using Grammar 'Standard Garbage (leading)' whose
Specification File cannot be extended.

Press "Mext' to create a new Garbage Grammar based on the Standard Grammar.

Einish Cancel

Figure 47: Add expression as leading Garbage

Adding the first application-specific garbage content as leading garbage content, will implicitly create a customized Garbage
Grammar for leading garbage. The Application Builder will do this for you after you have been asked for some additional
information like grammar name and description. Please remember that this customization is a kind of specialization of the
standard Garbage Grammar for leading contents. Your specialization is needed to recognize your application -specific gar-
bage contents. Any further application-specific leading garbage content will now be added to this customized Garbage
Grammar. The following screenshot shows how this dialog will look like and which values we have to choose for our first
customized Garbage Grammar.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 110 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:appbuilder_en_nlucontrol_testrecognition_addrecognition_leadinggarbage.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_customizedgarbagegrammar_appbuilder

U n I F \'jolUr[en{grprise

% Add Utterance to Garbage Grarmmar = @
Create a new custom Garbage Grammar Fo 3
Lo
Specify Mame and Description of the new custom Garbage Grammar E, 9
and the corresponding Grarnmar Specification File, 7

Wou are about to create a new custom Garbage Grammar that will include the
Contents of 'Standard Garbage (leading)'.

A Grammar Specification File which includes the Standard Garbage Grammar will
be created for each of the enabled Languages, Additionally, the Text 'Tam looking
for' will be added into the Specification File of Language 'English {United States)',

Grammar Mame: Garbage Grammar (leading) 1

Grammar Description: Garbage grammar for leading content

Grarnimar File: garhagel‘grm|

Press 'Finish' to create a new Grarnmar and to set it as the Control's used Grammar
for leading Garbage,

Mext = Einish] [Cancel

Figure 48: Create customized Garbage Grammar for leading Garbage

After the grammar file was successfully created the Application Builder will confirm this and inform you that the properties of
the NLU Control has been updated and that the NLU Control needs to be reloaded. Therefore you can close the dialog of
the NLU Control properties and reopen it again. This screenshot illustrates how the confirmation dialog will look like.

ﬁ Mewe Grarmrmar Created @

& newr Grammar has been created based on the formerly used Standard Grammar,
This Gramrmar has been set as the Control's used Grarnmar for leading Garbage,

In Order to use the new Gramrmar for the Contral, you have to apply the updated
Configuration in the Control's Properties Dialog.

Of course we will have to add more application-specific expressions as leading garbage to support Natural Language Un-
derstanding. Please add at least the following expressions analog to the one shown above:

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 111 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_customizedgarbagegrammar_appbuilder#folded_2
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:appbuilder_en_nlucontrol_testrecognition_createfile_leadinggarbage.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_customizedgarbagegrammar_appbuilder
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:appbuilder_en_nlucontrol_testrecognition_createfile_confirmation.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_customizedgarbagegrammar_appbuilder

U n I F \'jolUr[e ﬁérprise

= «lam looking for» (Already done as example)
= «lneed»

= «lrequire»

= «l want»

= «l would like to»

= «l have a questions regarding»

= «Do you have»

= «Help regarding»

After you have added the expressions listed above as leading garbage you have successfully created an customized Gar-
bage Grammar for leading garbage content.

Let us now continue with the second customized Garbage Grammar which will handle inner garbage content. Certainly you
could do this analog to the grammar we created in this chapter, but of course there is also another way to do so. This will be
illustrated in the next chapter.

After we have successfully created a customized Garbage Grammar for leading garbage with the Application Builder, we
still have to create the second customized Garbage Grammar which handles inner garbage.

Please remember yourself that we used the Grammar Studio to create our first grammar. In the previous chapter the first
customized Garbage Grammar was created by using the Application Builder as editor and now we finally will use both ap-
plications in cooperation.

As described above we will start creating a grammar with the Application Builder and then edit/finalize it in the Grammar
Studio. This way is suggested if a grammar was estimated to be a very simple one while the complexity increases steadily
when editing it. Therefore it is a good idea to switch the editor and use the Grammar Studio, if the requirements of a gram-
mar have increased after the creation process was started.

First of all we use the Application Builder to implicitly create an application-specific customized Garbage Grammar for inner
garbage contents. Therefore we again use the NLU Control and its feature to test the speech recognition setup like it is de-
scribed in the previous chapter.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 112 von 133

UNIFY e

Now let us start to add a first expression as inner application-specific garbage, which will implicitly create a customized
Garbage Grammar and update the NLU Control to use this newly introduced grammar.

What about the expression «I want new Wheels» when thinking of phrases containing inner garbage? Just perform a test
with this expression like it was described in the previous chapter. As a result you will see that only the part «<new» will not
be recognized. All other parts are already recognized by the main grammar (named «DillerCarSupplies.grm») and our first
customized Garbage Grammar for leading garbage content. The following screenshot shows how the test result should look

like:
B
°* Test Speech Recognﬂio_ ﬁ
Test the current Speech Recognition Setu [}
e ecsiin o €
Verify the Control's current Speech Recognition Setup by retrieving the S)
concrete Recognition Results of different Utterances, 4

Enter an Utterance expected to be said by a Caller during Runtime. The Utterance
will be recognized accerding to the current Speech Recognition Setup using the
Grarmmars of the selected Language.

Recognition Settings

Language: | English (United States) 57

Utterance: Iwant new Wheels -

Recognition Result

Utterance Grammar Result

v Twant Garbage Grammar (leading) 1

(7 new i
v Wheels DillerCarSupplies wheelstyres

=

Figure 49: Unsuccessful Recognition of non-defined inner Garbage

So, let us add the expression «new» as an application-specific inner garbage. As already mentioned in the previous chapter
please do simply use the garbage can icon to define the selected expression as garbage. This will open a further dialog re-
guesting you to select if this expression should be regarded as leading or inner garbage. Please regard to add the expre s-
sion as inner garbage this time like it is shown in the following screenshot.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 113 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:appbuilder_en_nlucontrol_testrecognition_innergarbage.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_customizedgarbagegrammar_interaction

U n I F \'jli_)[f; .r’nyerprise

|
. Add Utterance to Garbagew

Add an Utterance to the used Garbage Grammar

Add the Utterance that could not be recognized to the currently used
Garbage Grammar,

You are about to add Text 'new’ to the Garbage Grammar currently used by the
Control, If the Text is added to the Garbage Grammar, it will be treated as
unimportant Content and thus will be ignored in the User's Utterance in Future,

The Text can either be added to the Grammar for leading Garbage (that filters
Content from the Beginning of the User's Utterance) or to the Grammar for inner
Garbage (that filters Content from within and the End of the User's Utterance).

() Add Text to Grammar for leading Garbage

(@)iAdd Text to Grammar for inner Garbage:

The Control is currently using Grammar 'Standard Garbage (inner)' whose
Specification File cannot be extended.

Press 'Mext' to create a new Garbage Grammar based on the Standard Grammar,

< Back MNext = Einish

Figure 50: Add expression as inner Garbage

Adding this first application-specific garbage content as inner garbage content, will implicitly create a customized Garbage
Grammar for inner garbage. As described in the previous chapter the Application Builder will do this for you after you have
been asked for some additional information like grammar name and description. The following screenshot shows how this
dialog will look like and which values we have to choose for this second customized Garbage Grammar.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 114 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:appbuilder_en_nlucontrol_testrecognition_addrecognition_innergarbage.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_customizedgarbagegrammar_interaction

U n I F %Ur cr’ntér

- —
., Add Utterance to Garbage Grammlgl_léj

Create a new custom Garbage Grammar 4 00 i
Specify Mame and Description of the new custom Garbage Grammar B, -9
and the corresponding Grammar Specification File, 74

You are about to create a new custom Garbage Grammar that will include the
Contents of 'Standard Garbage (inner)'.

A Grammar Specification File which includes the Standard Garbage Grammar will
be created for each of the enabled Languages. Additionally, the Text 'new’ will be
added into the Specification File of Language 'English (United States)'.

Grammar Mame: Garbage Grammar (inner) 1

Grammar Description: Garbage gramrar for inner content

Grammar File: garbage2.grm|

Press 'Finish' to create a new Grammar and to set it as the Control's used Grammar
for inner Garbage.

MNext = [Einish] [Cancel]

Figure 51: Create customized Garbage Grammar for inner Garbage

After the grammar file was successfully created the Application Builder will confirm this and inform you that the properties of
the NLU Control has been updated and that the NLU Control needs to be update. Therefore you have to close the dialog of
the NLU Control properties and reopen it again.

By now we add the first application-specific inner garbage and thus created implicitly a customized Garbage Grammar for
inner garbage contents. In the previous chapter we used the NLU Control and its feature to test the speech recognition set-
up to add all other possible expressions. This was a very easy way.

As an alternative we will try to switch to the Grammar Studio now to edit the previously created customized Garbage
Grammar for inner garbage. This will illustrate once more how these two applications work together.

Please start the Grammar Studio which will load the Application Builder workspace as Repository Folder. Within your repos-
itory please open your Application Grammars then choose our sample Application «Tutorial - DillerCarSupplies (Initial

Draft)» and finally select the current customized Garbage Grammar for inner garbage («garbage2.grm») in American Eng-
lish. The following screenshot will help you to find your way through the repository.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 115 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_customizedgarbagegrammar_interaction#folded_1
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:appbuilder_en_nlucontrol_testrecognition_createfile_innergarbage.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_customizedgarbagegrammar_interaction

» B Standard Grammars [Symvia 2.0]
4 (= Application Grammars [Syrmvia 2.0]
: = Appointment
> [DillerCarSupplies
a = Tutornal - DillerCarSupplies {Initial Draft)
» [DillerCarSupplies (DillerCarSupplies.grm)
. [& Garbage Grammar (leading) 1 (garbagel.grm)

4 [Garbage Grammar (inner) 1 (garbage2.grm)
&= English (United States)
- = WeatherfpplicationMLU

If you load this language-specific grammar into the editor by double-clicking the selected node, you will see the grammar
structure of our customized Garbage Grammar. The following screenshot displays how this grammar structure should look
like.

Grammar "garbage2’
2 Standard Rule

% [std garbage infix]
& ["new”]

Figure 52: Structure of customized Garbage Grammar for inner Garbage Content

As you can see in the previous screenshot this grammar structure already contains one Alternative which will recognize the
utterance «new». This was implicitly done by the Application Builder when we add this expression as garbage content.

We will now continue to add further application-specific inner garbage contents manually by using the Grammar Studio. The
following list contains some further possible application-specific inner garbage contents:

«new» (Already done as example)
«a»

«an»

«some»

«to buy»

«to get»

«to repair»

As you probably remember from this chapter («Step 08») we have to edit the grammar structure for every application-
specific inner garbage content:

= Step Al: Add an Alternative to a Rule
= Step B1: Add a Recognition of the garbage content to the previously created Alternative

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 116 von 133

https://sdk.cycos.com/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_grammar
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_appbuilderrepository_languagespecificgrammar_innergarbage.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_customizedgarbagegrammar_interaction
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_grammarstructure_innergarbage.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_customizedgarbagegrammar_interaction

UNIFY s

Please do this for all application-specific inner garbage contents analog to the proceeding described within this chapter
(«Step 08»). If you have successfully edited the grammar structure in this way, it will look like the following screenshot.

Grammar ‘garbage2’
4 Standard Rule

fiz [std garbage infix]

I ["new"

B ["a"]

& ["an"]

B ["some"

B ["to buy"]
i ["toget’]
B ["torepair']

Figure 53: Final Structure of customized Garbage Grammar for inner Garbage Content

...Congratulations! We have successfully done our second (and last) job! Both customized Garbage Grammars were suc-
cessfully created in different ways and both Garbage Grammars are activated in the NLU Control of our sample application.
If those Garbage Grammars are activated in addition to our main grammar (named «DillerCarSupplies.grm»), the applica-
tion call flow can be routed even if potential customers make use of natural language.

Of course our Garbage Grammars currently describe only a small set of leading/inner parts. To support a good understand-
ing of natural language, some more expression should be added. It would be your turn now to enhance these grammars
and drive them to perfection.

However you can now deploy and test our sample application with the help of the Application Builder. Therefore the Media
Server Starter Kit will come along with the OpenScape Media Server which represents the application host in this scenario.
After the application is successfully deployed on this application host you will be able to call your sample application via a
SIP softphone.

If you want to verify your created grammars and compare your final sample application against a sample solution, you can
download our solutions in the Fusion Developer Portal:

Download a zip file named as «tutorial_dillercarsupplies_finalversion.zip» which represents an Application Builder Ar-
chive File. This archived package contains finally our sample application named «Tutorial - DillerCarSupplies (Final Ver-
sion)».

= Download the Grammars as sample solution:
= Download a zip file named as «tutorial_dillercarsupplies_grammars.zip» which contains all the grammars which
were created within this tutorial.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 117 von 133

https://sdk.cycos.com/dev:sdk:mediaserver:start
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:grammarstudio_en_appbuilderrepository_languagespecificgrammar_innergarbage_final.png?id=dev:sdk:appbuilder:grammarstudio:tutorials_creategrammar:create_customizedgarbagegrammar_interaction

UNIFY s

This section was created to offer detailed background information on specific topics. The knowledge base contains the fol-
lowing chapters:

General Concepts

Grammar Logic

Grammar Components

Improve Grammar

Understanding Semantic Results

Application Builder Workspace as Repository Folder

This knowledge base chapter will try to collect all general concepts which are used through out this tutorial. Every definition
needs a kind of subsumption in the context of the Grammar Studio. The following terms are classified in alphabetically or-
der:

= Alternative: The term Alternative describes a grammar component

= Application: In this context the term application will be used as a synonym for IVR Application which means an
application with Interactive Voice Response.

= Customized Garbage Grammar: See «Garbage Grammar»

= Dialog Engine (DIANE): The term dialog engine represents a platform for understand natural language.

= DIANE Environment: See «Dialog Engine (DIANE)»

= DIANE Runtime: See «Dialog Engine (DIANE)»

= External Reference: See «Recognition Reference»

= Garbage Grammar: The term Garbage Grammar represents a grammar which only recognizes user utterances
without returning any Semantic Result

= Grammar: The term grammar will be used as a synonym for a Grammar file used by the Dialog Engine (DIANE).

= Internal Reference: See «Recognition Reference»

= Natural Language Understanding (NLU): The expression of Natural Language Understanding means the under-
stand of language which is similar to the everyday language used in dialogs between human beings

= Recognition: The term Recognition describes a grammar component

= Recognition Reference: The term Recognition Reference describes a grammar component

= Rule: The term Rule describes a grammar component

= Semantic Result: The term Semantic Result describes a grammar component

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 118 von 133

U n I F \'jolUr[entérprise

This knowledge base chapter will try to explain what is meant by a grammar in this context and how a grammar will work
logically. This understanding can be helpful for novices which just have started with creating/editing grammars.

First of all a grammar is designed to define what user utterances will (and can) be recognized (by an application using this
grammar). In most cases there will be different possibilities of user utterances that have to be recognized by a grammar.
This means that a grammar will contain several alternative user utterances, which can also be nested into each other.

The process of recognition in the context of a grammar can therefore be seen as a matching of a previously defined text
value representing a potential user utterance to a practically given utterance which is also given as a text value.

If a grammar recognizes an user utterance one of these nested alternatives matches. Please image that a grammar does
the process of recognition by offering different possible flows of recognition. If one of these flows matches, the grammar has
recognized an user utterance.

If you create a grammar which should recognize three names (e.g Adam, John and Susan), each name is one possible flow
of recognition through this grammar.

If the grammar has to recognize one of those three names mentioned above, the grammar will recognize the name, be-
cause there is a matching flow of recognition. But if the grammar has to recognize another name than those three, the
grammar will not recognize it. There is no matching flow of recognition.

The first aspect of a grammar could therefore be summarized in this question: Is this a recognizable user utterance? A
grammar therefore will be used by applications to define possible user dialogs

But a Grammar does not only specify possible user utterances. It (optionally) can also give a kind of return value according
the recognized utterance. If there is a recognizable user utterance someone could be interested what this utterance was or
what this utterance will mean for the further proceeding. In fact most speech-enabled applications use grammars not only to
define a possible user dialog but also want to react to the recognized utterance.

Therefore the grammar needs to define a kind of result value that will be called a Semantic Result from now on. Such Se-
mantic Results can be seen as a return values representing the recognized user utterance (or anything else, depending the
logic of a grammar). However these Semantic Results has to be specified by the grammar designer as well as the possible
flow of recognitions.

The second aspect of a grammar can therefore be summarized in the guestion: What is the meaning of a utterance (if it
was a recognizable one)? Thus a grammar can be used by application to allow a reaction to a recognizable user utterance.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 119 von 133

U n I F \'jolUr[e ﬁérprise

As a conclusion we can sum up that a speech-enabled application which uses a grammar will always be able to determine
if an user utterance is recognizable. Only if the grammar has some kind of Semantic Result the application will be allowed
to react to the recognized user utterance.

Grammars which do not offer any Semantic Result will (sometimes) be called Garbage Grammars. Garbage Grammars
therefore defined as grammars that only determine if an user utterance is recognizable. Because this does not allow any
reaction to a potential user utterance, the recognized utterance can be seen as a kind of garbage. These utterances will be
lost for any application, because no reaction is possible.

This knowledge base chapter will give you some background information about the different components of a grammar
which you will need to start editing a grammar. Although the Grammar Studio tries to reduce the complexity of editing a
grammar, the user should know the meaning and purpose of these grammar components.

There are different components of grammar each having its own meaning and purpose. Grammar components can be dif-
ferentiated in explicit and implicit ones.

On the one hand, explicit components are directly shown in the grammar structure and can directly be edited. On the other
hand, implicit components are not directly accessible. In most of the cases there will be a dedicated editor dialog to change
those components.

The following implicit components are available:

= Rules

= Standard Rule

= Alternatives

= Recognitions

= Recognition References
= Internal References

= External References

The following explicit components are available:

= Comments
= Semantic Results

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 120 von 133

U n I F \'jolUr[e ﬁérprise

Rules are basic components, because each Grammar will have at least one Rule. This Rule will be called Standard Rule
(something also referred to as Root Rule).

Rules are used to organize Grammars. Instead of having a grammar with one (Standard) Rule containing dozens of child
nodes, the user can create multiple Rules each having a dedicated meaning. This will increase the clearness of the gram-
mar if it will be edited by another person later on.

Please regard that rules are not allowed to be nested into each other (although theoretically it would be a possible way).
Allowing the nesting of Rules would it make more complicated to support a re-use of Rules within a grammar. In fact the
internal reutilization of Rules is realized by a differentiation of the declaration and the usage/assignment. The declaration is
strictly separated from the usage/assignment of a Rule. As you can see in the following screenshot all Rules are declared
on one identically logical level, which does not describe the usage of a Rule (except the Standard Rule which can be seen
as the entry point of a grammar).

4 Grammar "multimedia®
» 4 Standard Rule
. B3 "artikel"
» B "multimedia_item"

Figure 54: Multiple Rules in a Grammar

If Rules are declared in a grammar they can be used by all other internal Rules. This finally supports the important internal
reutilization of Rules without allowing to nest Rules into each other.

But how can already declared Rules now be used in another Rule of the same grammar? If you want to use an additionally
declared 'Rule’ within your grammar, you will have to create an Internal Reference with your Rule as reference target. This
topic of internal references will be discussed in more details in the section about ‘Recognition References'.

Please regard to differentiate between the declaration of a Rule and the usage/assignment of a Rule as an important as-
pect.

Furthermore Rules have at least two interesting properties. Besides its name (which cannot be changed for the Stand-
ard Rule), this is a comment.

This comment will allow you to describe what the purpose of the associated Rule will be. Comments which refer to the
Grammar as a whole should be created as a comment of the Standard Rule.

Rules can also have child nodes. These child nodes are called Alternatives. They will be discussed in the following sec-
tion.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 121 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_grammarstructure_nodes_rules.png?id=dev:sdk:appbuilder:grammarstudio:knowledgebase_grammarcomponents

U n I F \'jolUr[e ﬁérprise

Each Alternative is a child node of a parent Rule, but there can be multiple Alternatives in one Rule. This can be tracked in
the following screenshot

4 Grammar "multimedia’
a4 tH Standard Rule
> B [multimedia item]
» - [arikel + multimedia item]

a 1 "orikel”
. B ["einer"]
. I ["einen"
. E- ["eine"
> B ["ein"

Figure 55: Multiple Alternative Nodes

The main purpose of an Alternative is to define one possible flow of recognition. Therefore the content of an Alternative
(in other words: its possible child nodes) will define this flow of recognition.
Please see page 119, Knowledge Base: Grammar Logic, for more background information on this topic.

Alternatives can hold two different kinds of component types as child nodes. Besides Recognitions they can include
Recognition References as content. Both components are discussed in the following sections.

An Alternative itself does not need a describing name. They are identified by their content. Please regard that an Alter-
native is defined by the sequence of all its child nodes. Therefore the order of all its child nodes has to be regarded.

The importance of the order is discussed in more details in context of Recognitions.

Nevertheless Alternatives contain another very important property. This property is the so-called Semantic Result. In
a nutshell, the Semantic Result of a Alternative defines what the return value will be, if there is a matching flow of recogni-
tion. The component Semantic Result will also be discussed in a later section.

'Recognitions' are relative simple grammar components, which can be added as child nodes to an 'Alternative'.

The purpose of a 'Recognition’ is to describe an user utterance which the grammar will recognize.

Theoretically this user utterance can be any text content. A single character is supported as well as a complete sentence for
example. However you have to keep in mind, that the recognition has to match a potential user utterance. Therefore it is not
recommended to define complete and complex sentences as one Recognition.

Please review chapter Knowledge Base: Improve Grammar Recognitions (Best Practices) on page 125 to get more infor-
mation how to optimize the recognition of more difficult phrases.

Please regard that the position of a Recognition in the list of child nodes of a parent Alternative is an important factor. If you
change the position of a Recognition in its parent Alternative, this will have effect on the flow of recognition. The fol-
lowing example will illustrates this fact.

["Alternative']

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 122 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_grammarstructure_nodes_alternatives.png?id=dev:sdk:appbuilder:grammarstudio:knowledgebase_grammarcomponents

UNIFY s

+--['Recognition' of «this»] // 1. Child
+--['Recognition' of «is»] // 2. Child
+--["'Recognition' of «cool»] // 3. Child

Figure 56: Theoretical example of an Alternative with multiple Recognitions in given

If you swap the position of the first two Recognitions in the example above, you change the flow of recognition in the Alter-
native from «this is cool» to «is this cool».

Please remember that an Alternative is defined by the sequence of all its child nodes. The following screenshot shows how
the sample above would like in the Grammar Studio.

a tH "RuleForExample”
a B ["this" + "E" + "cool"]
El "this"
B

"cool"

Figure 57: Alternative with multiple Recognitions in given order

In the context of the example shown above, an observing reader meanwhile probably could have asked himself, why there
are three single-word-Recognitions instead of one Recognition defining the complete phrase. Of course, the example above
should be optimized in practice to keep the clearness of the grammar structure. However there will be no difference in the
recognition capacity. The more optimized version of the sample is shown in the following screenshot.

a4 fH "RuleForfxample"
a B ["this is cool"]
(=] "this is cool”

Figure 58: 'Alternative' with an united Recognition

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 123 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_grammarstructure_nodes_recognitions.png?id=dev:sdk:appbuilder:grammarstudio:knowledgebase_grammarcomponents
https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_grammarstructure_nodes_recognitions_united.png?id=dev:sdk:appbuilder:grammarstudio:knowledgebase_grammarcomponents

U n I F \'jolUr[e ﬁérprise

Hint: The Grammar Studio explicitly offers you an option to automatically unite Recognitions in a sequence. Please see the
corresponding option in the context menu of a Recognition.

'Recognition References' are the last grammar component to describe within this knowledge base chapter. They represent
a reference to a recognition and they can be added as child nodes (only) to an 'Alternative'.

The purpose of a Recognition Reference is to make usage of already existing parts. The phrase «parts» is intentionally kept
unspecific here, because «parts» can mean different things. However a Recognition Reference specifies always the name
of such parts as its reference target.

At this point we have to differentiate between Internal References and External References.

Internal References describe a reference that refers to another Rule within the same grammar. This Internal Reference
therewith represents the usage/assignment of a Rule as it was already mentioned in the section about Rules.

In this case you will select the name of your desired Rule as a reference target. This will cause that the referenced Rule will
be included into the flow of recognition.

External References mean something different. Please image the following situation: You already have another existing
grammar handling some basics, which you could re-use in your current grammar. When you want to reference this al-
ready existing Grammar, you will have to make use of an External Reference.

In this case you will select the name of the already existing grammar as reference of your target. The will cause that the
referenced grammar will be included into the flow of recognition, which will use the referenced Grammars Standard Rule as
its entry point.

The following screenshot shows the usage of Recognition References. As you can see the Rule named «multimedia_item>
is the target of two different Recognition References.

4 Grammar "multimedia’
4 tH Standard Rule
4 B [multimedia item)
4 "multimedia item”
4 T [artikel + multimedia item)
4 "multimedia item”
. B3 "artikel"
» B "multimedia_item"

Figure 59: Internal References as Recognition References

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 124 von 133

https://sdk.cycos.com/_detail/dev:sdk:appbuilder:grammarstudio:grammarstudio_en_grammarstructure_nodes_recognitionreferences.png?id=dev:sdk:appbuilder:grammarstudio:knowledgebase_grammarcomponents

U n I F \'jolUr[entérprise

Please regard that the position of a Recognition Reference in the list of child nodes of its parent Alternative is also an im-
portant factor. If you can change the position of a Recognition Reference in the parent Alternative, this will have effect
on the flow of recognition. This works analog to Recognitions (See previous section).

Comments are optional grammar components which can only be added to a grammar by editing Rules. Each Rule can
have an specific Comment. If a Comment is valid for the complete grammar it should be added to the Standard Rule.

The purpose of a Comment is to describe the purpose of a Grammar or give an example of an utterance which will be
recognized by the grammar. This information can be very useful, if there are more than one person working with the gram-
mar.

Each Comment itself consists of different lines. Each line of a Comment has to be defined separately when using the
Grammar Studio.

Semantic Results are optional grammar components. They can only be defined by edit the corresponding property of
an Alternative. Each Alternative can have an specific Semantic Result.

A Semantic Result describes the denotation of an Alternative. It represents a kind of return value which can (and in most
cases will) be used by an application to react to a recognized utterance, if the associated Alternative describes the flow of
recognition.

In other words: A Semantic Result specifies the return value if an user utterance matches the Alternative.
A Semantic Result can consists of two different types of content. The first possible content type is simple text (containing

single characters, words, complete sentences or what so ever). The other content type represents references to other Se-
mantic Results within the same Alternative.

But what can practically be done now with these different contents in a Semantic Result? If you need an answer to this
question right now, please review the Knowledge Base: Understanding Semantic Results on page 126. This chapter will
give a closer look into this grammar component and illustrates the handling with two (theoretical) examples.

This chapter gives you some hints how to improve a grammar recognition. This information can be seen as best practices.
To increase the recognition of your grammar please regard the following best practices:

= Do not use any punctuation in your Recognition
= Announce numbers, time data or dates as they are spoken (e.g to recognize «3», use «three»)

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 125 von 133

U n I F \'jolUr[entérprise

= Announce foreign expressions as they are spoken in the language of your grammar (e.g. use «HaiFi» to recognize
the english word «HiFi» in a german grammar)

= If you want to spell phrases character by character, add an underline «_» after each single character (e.g. to rec-
ognize the phrase «CD player», use «C_D_player»)

This chapter tries to give some more details which should help the reader to understand the basic principals of Semantic
Results.

A Semantic Result represents a kind of return value which can (and in most cases will) be used by an application to react to
the recognized utterance, if the associated Alternative describes the flow of recognition.

A Semantic Result can consists of two different types of contents. The first possible content type is simple text (containing
single characters, words, complete sentences or what so ever). The other content type represents references to other Se-
mantic Results within the same Alternative.

But what can practically be done now with these different contents in a Semantic Result? Let's use some examples to an-
swer this question...

Please image the following situation:

You have an grammar named «G1» which recognizes two different user actions (e.g. «listen to» and «record») and two dif-
ferent objects for these actions (e.g. «voicemail» and «email»). Therefore the grammar will have one Rule handling the ac-
tions and one Rule which handles the objects.

Furthermore the grammar will be designed to recognize the reasonable permutations of these actions and objects (e.g. «lis-
ten to voicemail» and «listen to email» as well as «record voicemail» and «record email»). This will be done in the Standard
Rule. Therefore there will be an Alternative which makes usage of the previously declared Rules in a reasonable permuta-
tion.

If someone had spend some time in writing down the structure of this grammar by hand (without using the Grammar Stu-
dio), this probably would look like the following figure.

[Grammar «G1»]

+--['Rule’ for actions]

I

| +--['Alternative’]

[11

| | +-[Recognition’ of «listen to»]
[1

|

|

|

+--['Alternative']

+--['Recognition’ of «record»]

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 126 von 133

UNIFY s

I+--['Ru|e' for objects]
I I+--['Alternative‘]
I I |+--['Recognition‘ of «voicemail»]
I I+--['Alternative‘]
I +--['Recogpnition’ of «email»]
I+--['Stamdard Rule’

+--['Alternative’]

+--[Recognition Reference' to «'Rule’ for action»]
+--[Recognition Reference' to «'Rule' for objects»]

Figure 60: Grammar Structure of Grammar «G1»

If this grammar would be used by an application, the possible user utterance «listen to email» would be recognized, be-
cause there would be a matching flow of recognition.

But how should the application react to this recognized user utterance? How should the application decide what action the
user requested for which object? There is no way the application could this, because the grammar makes no use of any
Semantic Result!

Please image the following situation:
We have added Semantic Results to the grammar «G1» and saved this new grammar under the name «G2».

Therefore each Alternative in the Rules handling actions and objects has to be edited. Each Alternative will get an own Se-
mantic Result which defines a text phrase as return value. The Alternatives containing the actions will return a string start-
ing with «<ACT_...», whereas the Alternatives containing the objects will return a string like «OBJ_...».

Finally the Alternative in the Standard Rule gets also a Semantic Result. Here the Semantic Result won't be a text phrase.
In this case we make use of two references to other Semantic Results. The target of the first reference will be the Semantic
Result of the Recognition Reference handling the actions and the second one references the Semantic Result of the
Recognition Reference handling the objects.

Let's take a look at the structure of the grammar «G2». Please try to comprehend the changes compared to the structure of
the grammar «G1».

[Grammar «G2»]

-['Rule’ for actions]

[
+-
I
[
[
I

|
+--['Alternative’ returns «ACT_Listen» as 'Semantic Result']
|
|

|
+--['Recognition’ of «listen to»]

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 127 von 133

U n I F \'jolUr[entérprise

+--['Alternative' returns «ACT_Record» as 'Semantic Result']
+--['Recognition’ of «record»]
--['Rule’ for objects]

--['Alternative’ returns «OBJ_VMail» as 'Semantic Result']

|

+

| | B) ;

| +--['Recognition' of «voicemail»]
|

+

--['Alternative’ returns «OBJ_EMail» as 'Semantic Result']
|
+--['Recognition’ of «email»]
+--['Standard Rule']

[
+--['Alternative’ returns the 'Semantic Results' of both child nodes as own 'Semantic Result']

+--[Recognition Reference' to «'Rule’ for action»] // 1. Child
'Recognition Reference' to «'Rule’ for objects»] // 2. Child

Figure 61: Grammar Structure of Grammar «G2»

If this grammar would be used by an application now, the possible user utterance «listen to email» would be recognized,
because there would be a matching flow of recognition.

Furthermore the added Semantic Results will enable each application which use this grammar to react to the recognized
user utterance. In this example the return value of the flow of recognition through this grammar «G2» would look like
«ACT_Listen OBJ_EMail».

Please regard that the exact return value depends on how the Semantic Results of both child nodes are concatenated to
each other.

The application which makes use of this Semantic Result could now parse this return value and finally get the information
what action the user requested with which object. So the grammar does not only specify a possible user utterance, but also
does enables the application to react to the recognized user utterance.

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 128 von 133

UNIFY s

The chapter will give you some more details about the structure of the Repository Folder when using an Application Builder
workspace.

When you use an Application Builder workspace as Repository Folder for the Grammar Studio, you will have access to all
your grammars you are working with.

If a grammar is part of an application the grammar will be called an Application Grammar. If your grammar however is part
of a composition it will be called a Composition Grammar. In contrast Workspace Grammars define grammars which
have been created to be used within the complete Application Builder workspace.

Finally Standard Grammars specify a basic set of grammars which is supported by the Dialog Engine (DIANE) environ-
ment. These Standard Grammars can be referenced by any other grammar without any restrictions and offer handle basic
use cases like recognizing time data, dates, etc..

To sum this up, the Application Builder (and therefore also the Grammar Studio) differs between the following scope of
grammars:

= Application Grammars
= Composition Grammars
= Workspace Grammars
= Standard Grammars

Each of these scopes will be represented in an own folder within the Repository Explorer of the Grammar Studio.

These different grammar scopes will have influence on different aspects when working with the Grammar Studio. This sec-
tion will show up those factors which will be influenced.

External Reference...

SCOPES Listed Editable ...Target ...Validation
Standard Grammars yes no yes yes
Workspace Grammars yes yes no no
Composition Grammars yes yes/no5 no/yesG no/yes7

sno: Can be defined as read-only (in future developments)
¢yes: Only for Grammars in the same Composition

"yes: Only for Grammars in the same Composition

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 129 von 133

U n I F \'jolUr[entérprise

Application Grammars yes yes no/yes8 no/yes9

Figure 62: Scope Influences

All grammars in all different scopes will be listed in the Repository Explorer and can be opened to review or analyze those
grammars.

With the exception of Standard Grammars all other grammars are editable. Standard Grammars are read-only, because
they represent a basic set of grammars which is supported by the DIANE environment. In future developments Composition
Grammars will be allowed to be read-only too. The column entitled «External Reference Target» shows if grammars of a
specific scope can be used by other grammars as a target of an External Reference. Standard Grammars can be used as
reference targets of course, but Workspace Grammars will not be allowed as possible targets. Composition Grammars can
only be used as reference targets by grammars from the same composition but not by other grammars.

Application Grammars are similar to Composition Grammars in this case. They can also only be used as reference targets
by grammars from the same application but not by any other grammar.

Finally the different scopes also influence the validation. The Grammar Studio will perform multiple checks if the opened
grammar is valid or not. This check also includes the verification of External Reference targets.

In this context Standard Grammars will be included in the validation process. Workspace Grammars won't be included in
the validation process of verifying external references, because they are no allowed reference targets.

Composition Grammars will only be included in the validation process if a Composition Grammar is referenced by another
grammar from the same composition. In all other cases it won't be included in the validation process, because Composition
Grammars are no allowed reference targets.

Application Grammars are similar to Composition Grammars again. They will also only be included in the validation process
if an Application Grammar is used by another grammar from the same application.

¢yes: Only for Grammars in the same Application

°yes: Only for Grammars in the same Application

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 130 von 133

UNIFY s

Q: How to load a Repository Folder by command-line argument?

A: Please use the following command-line argument:
-repositoryFolder <path-of-repository-folder>

= Due to the lack of an admin Ul you have to delete a deployed application from the custom deployment folder
.\Unify\ms_starterkit\application_host\deployment-custom and redeploy it if you'd like to change the language at a
given extension

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 131 von 133

UNIFY i

The following applications are installed with the Media Server Starter Kit:

|eraiTeation Besaiisian Default Num- |[NLU applica- ||Default
pp P ber tion Workspace
|Simp|e IVR HA very simple IVR application ||807 ||no ||yes |
|Speaking Clock |[Reads out the current system time to the caller |l804 |Ino |lyes |
Switch Language tsi:r?ws how to change the language of an applica- 805 - ves
|Weather Application™ _|[Provides the current weather for some cities |l8os |Ino |lves |
— — -

Weather Application _Same as Weather Application, but with a Speech 815 ves ves
NLU interface
Appointment HSchedules a meeting		812		yes		yes		
Di		er Car Supplies HAuto Attendant based on NLU		816		yes		yes
Read The Meter HCoIIect data for an electricity supplier		814		yes		yes		

. Application showing how to read/write into data-
Automatic survey b no no

ases

The following compositions are installed with the Media Server Starter Kit:
|App|ication ||Description |
|Change Numeric Password HChanges the numeric password of a user |
|Login HPerforms a login based on the users extension and numeric password |

%% Contained only in old versions of the StarterKit

™ Contained only in old versions of the StarterKit

Copyright © Unify Software and Solutions GmbH & Co. KG 2014 All Rights Reserved

Authors: Schiffer et al. Seite 132 von 133

Fo

Siemens Enter Communications

Unify Software and Solution GmbH & Co. KG 2016
Mies-van-der-Rohe-Str. 6, 80807 Munich, Germany
All rights reserved.

The information provided in this document contains merely general descriptions or characteristics
of performance which in case of actual use do not always apply as described or which may
change as a result of further development of the products. An obligation to provide the respective
characteristics shall only exist if expressly agreed in the terms of contract. Availability and technical
specifications are subject to change without notice.

Unify, OpenScape, OpenStage and HiPath are registered trademarks of Unify GmbH & Co. KG.
All other company, brand, product and service names are trademarks or registered trademarks of
their respective holders.

unify.com

